The dependence of the Recombination- Generation( R- G) current on the bulk trap characteristics and sili- con film structure in SOI lateral p+ p- n+ diode has been analyzed num erically by using the simulation tool,D...The dependence of the Recombination- Generation( R- G) current on the bulk trap characteristics and sili- con film structure in SOI lateral p+ p- n+ diode has been analyzed num erically by using the simulation tool,DESSIS- ISE.By varying the bulk trap characteristics such as the trap density and energy level spectrum systematically,the dependence of the R- G current on both of them has been dem onstrated in details.Moreover,the silicon film doping concentration and thickness are changed to make silicon body varies from the fully- depletion m ode into the partial- ly- depletion one.The influence of the transfer of silicon body characteristics on the R- G currenthas also been care- fully examined.A better understanding is obtained of the behavior of bulk trap R- G current in the SOI lateral gat- ed- diode.展开更多
Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substr...Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substrates can greatly affect the crystalline orientation, and the μc-Si:H films are comprised of small particles. Thickness detection by surface profilometry shows that the thin μc-Si:H films are homogenous in large scale. Distributions of both ion density and electron temperature are found to be uniform in the vicinity of substrate by means of diagnosis of Langmuir probe. Based on these experimental results, it can be proposed that rough surfaces play important roles in the crystalline network formation and Ar can affect the reaction process and improve the characteristics of μc-Si:H films. Also, ICP reactor can deposit the thin film in large scale.展开更多
Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness...Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness of the film was measured by atomic force microscope (AFM) and the relevant results were analyzed using the surface smoothing mechanism of film deposition. It is shown that an α-Si:H film with smooth surface morphology can be obtained by increasing the PH3/N2 gas flow rate for 10% in a high frequency (HF) mode. For high power, however, the surface morphology of the film will deteriorate when the Sill4 gas flow rate increases. Furthermore, optimized parameters of PECVD for growing the film with smooth surface were obtained to be Sill4:25 sccm (standard cubic centimeters per minute), At: 275 sccm, 10%PH3/N2:2 sccm, HF power: 15 W, pressure: 0.9 Torr and temperature: 350℃. In addition, for in thick fihn deposition on silicon substrate, a N20 and NH3 preprocessing method is proposed to suppress the formation of gas bubbles.展开更多
The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous...The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous feed-stocks. In this work, we show an approach to preparing seeded substrates for layer-transferrable silicon films. The commercial silicon wafers are used as mother substrates, on which periodically patterned silicon rod arrays are fabricated, and all of the surfaces of the wafers and rods are sheathed by thermal silicon oxide. Thermal evaporated aluminum film is used to fill the gaps between the rods and as the stiff mask, while polymethyl methacrylate (PMMA) and photoresist are used as the soft mask to seal the gap between the filled aluminum and the rods. Under the joint resist of the stiff and soft masks, the oxide on the rod head is selectively removed by wet etching and the seed site is formed on the rod head. The seeded substrate is obtained after the removal of the masks. This joint mask technique will promote the endeavor of the exploration of mechanically stable, unlimitedly reusable substrates for the kerfless technology.展开更多
A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface ...A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, the capping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification.展开更多
Silicon films were grown on aluminium-coated glass by inductively coupled plasma CVD at room temperature using a mixture of SiH4 and H2 as the source gas. The microstructure of the films was evaluated using Raman spec...Silicon films were grown on aluminium-coated glass by inductively coupled plasma CVD at room temperature using a mixture of SiH4 and H2 as the source gas. The microstructure of the films was evaluated using Raman spectroscopy, scanning electron microscopy and atomic force microscopy. It was found that the films are composed of columnar grains and their surfaces show a random and uniform distribution of silicon nanocones. Such a microstructure is highly advantageous to the application of the films in solar cells and electron emission devices. Field electron emission measurement of the films demonstrated that the threshold field strength is as low as -9.8V/μm and the electron emission characteristic is reproducible. In addition, a mechanism is suggested for the columnar growth of crystalline silicon films on aluminium-coated glass at room temperature.展开更多
The plasma parameters in ICP-CVD system with internal low inductance antennas(LIA) were diagnosed by Langmuir probe.The ions density(Ni) reached 1011-1012 cm-3,and the electron temperature(Te) was below ca.2 eV,...The plasma parameters in ICP-CVD system with internal low inductance antennas(LIA) were diagnosed by Langmuir probe.The ions density(Ni) reached 1011-1012 cm-3,and the electron temperature(Te) was below ca.2 eV,which was slightly decreased with applied power.A p-type hydrogenated microcrystalline silicon(μc-Si:H) film was prepared on glass substrate.After optimization of the processing parameters in flow ratio of SiH4:B2H6:H2,a high quality μc-Si:H film with deposition rate above 1.0 nm/s was achieved in this work.展开更多
The B- and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD). The microstructures of doped nc-Si'H films are carefully and systematic...The B- and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD). The microstructures of doped nc-Si'H films are carefully and systematically characterized by using high resolution electron microscopy (HREM), Raman scattering, x-ray diffraction (XRD), Auger electron spectroscopy (AES), and resonant nucleus reaction (RNR). The results show that as the doping concentration of PH3 increases, the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously. For the B-doped samples, as the doping concentration of B2H6 increases, no obvious change in the value of d is observed, but the value of Xc is found to decrease. This is especially apparent in the case of heavy B2H6 doped samples, where the films change from nanocrystalline to amorphous.展开更多
Raman scattering spectroscopy and scanning electron microscopy (SEM) techniques were used to determine the structural properties of two typical series of microc rystalline silicon (μc-Si:H) films deposited at differe...Raman scattering spectroscopy and scanning electron microscopy (SEM) techniques were used to determine the structural properties of two typical series of microc rystalline silicon (μc-Si:H) films deposited at different VHF plasma power and different working gas pressure by very high frequency plasma enhanced chemical v apor deposition (VHF-PECVD) technique. Raman spectra measurements show that both crystalline volume fraction Xc and average grain size d of μc-Si : H films ar e strongly affected by the two deposition conditions and are more sensitive to w orking gas pressure than VHF plasma power. SEM characterizations have further co nfirmed that VHF plasma power and working gas pressure could clearly enhance the surface roughness of μc-Si : H films ascribing to polymerization reactions, w hich is also more sensitive to working gas pressure than VHF plasma power.展开更多
Hydrogenated amorphous silicon (a-Si: H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD) in (SiH4+H2) atmosphere at room te...Hydrogenated amorphous silicon (a-Si: H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD) in (SiH4+H2) atmosphere at room temperature. Results of the thickness measurement, SEM (scanning electron microscope), Raman, and FTIR (Fourier transform infrared spectroscopy) show that with the increase in the applied peak voltage, the deposition rate and network order of the films increase, and the hydrogen bonding configurations mainly in di-hydrogen (Si-H2) and poly hydrogen (SiH2)n are introduced into the films. The UV-visible transmission spectra show that with the decrease in SiH4/ (SiHn+H2) the thin films' band gap shifts from 1.92 eV to 2.17 eV. These experimental results are in agreement with the theoretic analysis of the DBD discharge. The deposition of a-Si: H films by the DBD-CVD method as reported here for the first time is attractive because it allows fast deposition of a-Si: H films on large-area low-melting-point substrates and requires only a low cost of production without additional heating or pumping equipment.展开更多
The nanoindentations were applied to island-shaped regions with metal-induced Si crystallizations. The experimental stress-strain relationship is obtained from the load-depth profile in order to investigate the critic...The nanoindentations were applied to island-shaped regions with metal-induced Si crystallizations. The experimental stress-strain relationship is obtained from the load-depth profile in order to investigate the critical stresses arising at various phase transitions. The stress and strain values at various indentation depths are applied to determine the Gibbs free energy at various phases. The intersections of the Gibbs free energy lines are used to determine the possible paths of phase transitions arising at various indentation depths. All the critical contact stresses corresponding to the various phase transitions at four annealing temperatures were found to be consistent with the experimental results.展开更多
Hydrogenated microcrystalline silicon(μc-Si:H)films were prepared on glass and silicon substrates by radio frequency magnetron sputtering at 100°C using a mixture of argon(Ar)and hydrogen(H2)gasses as precursor ...Hydrogenated microcrystalline silicon(μc-Si:H)films were prepared on glass and silicon substrates by radio frequency magnetron sputtering at 100°C using a mixture of argon(Ar)and hydrogen(H2)gasses as precursor gas.The effects of the ratio of hydrogen flow(H2/(Ar+H2)%)on the microstructure were evaluated.Results show that the microstructure,bonding structure,and surface morphology of theμc-Si:H films can be tailored based on the ratio of hydrogen flow.An amorphous to crystalline phase transition occurred when the ratio of hydrogen flow increased up to 50%.The crystallinity increased and tended to stabilize with the increase in ratio of hydrogen flow from 40%to 70%.The surface roughness of thin films increased,and total hydrogen content decreased as the ratio of hydrogen flow increased.Allμc-Si:H films have a preferred(111)orientation,independent of the ratio of hydrogen flow.And theμc-Si:H films had a dense structure,which shows their excellent resistance to post-oxidation.展开更多
Raman spectra and scanning electron microscope (SEM) techniques were used to determine the structural properties of microcrb'stalline silicon (μc-Si:H) films deposited on different substrates with the very high...Raman spectra and scanning electron microscope (SEM) techniques were used to determine the structural properties of microcrb'stalline silicon (μc-Si:H) films deposited on different substrates with the very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique. Using the Raman spectra, the values of crystalline volume fraction Xc and average grain size d are 86%, 12.3nm; 65%, 5.45nm; and 38%, 4.05nm, for single crystalline silicon wafer, coming 7059 glass, and general optical glass substrates, respectively. The SEM images further demonstrate the substrate effect on the film surface roughness. For the single crystalline silicon wafer and Coming 7059 glass, the surfaces of the μc-Si:H films are fairly smooth because of the homogenous growth or h'ttle lattice mismatch. But for general optical glass, the surface of the μ-Si: H film is very rough, thus the growing surface roughness affects the crystallization process and determines the average grain size of the deposited material. Moreover, with the measurements of thickness, photo and dark conductivity, photosensitivity and activation energy, the substrate effect on the deposition rate, optical and electrical properties of the μc-Si:H thin films have also been investigated. On the basis of the above results, it can be concluded that the substrates affect the initial growing layers acting as a seed for the formation of a crystalline-like material and then the deposition rates, optical and electrical properties are also strongly influenced, hence, deposition parameter optimization is the key method that can be used to obtain a good initial growing layer, to realize the deposition of μc-Si:H films with device-grade quality on cheap substrates such as general glass.展开更多
Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour d...Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour deposition system under the different deposition conditions. It was proposed that there was no direct correlation between the photosensitivity and the hydrogen content (CH) as well as H-Si bonding configurations, but for the stability, they were the critical factors. The experimental results indicated that higher substrate temperature, hydrogen dilution ratio and lower deposition rate played an important role in improving the microstructure of a-Si:H films. We used hydrogen elimination model to explain our experimental results.展开更多
The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated ...The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy, spectroscopic ellipsometer and atomic force mi- croscopy. It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH4 and the amorphous induction of glass surface during the initial ignition process, and growth of the incubation layer can be suppressed and uniform μc-Si:H phase is generated by the application of delayed initial SiH4 density and silane profiling methods.展开更多
The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon...The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.展开更多
Aluminum-induced crystallized silicon films were prepared on glass substrates by magnetron sputtering. Aluminum was added in the silicon films intermittently by the regular pulse sputtering of an aluminum target. The ...Aluminum-induced crystallized silicon films were prepared on glass substrates by magnetron sputtering. Aluminum was added in the silicon films intermittently by the regular pulse sputtering of an aluminum target. The amount of aluminum in the silicon films can be controlled by regulating the aluminum sputtering power and the sputtering time of the undoped silicon layer; thus, the Seebeck coefficient and electrical resistivity of the polyerystaUine silicon films can be adjusted. It is found that, when the sputtering power ratio of aluminum to silicon is 16%, both the Seebeck coefficient and the electrical resistivity decrease with the increasing amount of aluminum as expected; the Seebeck coefficient and the electrical resistivity at room temperature are 0.185-0.285 mV/K and 0.30-2.4 Ω.cm, respectively. By reducing the sputtering power ratio to 7%, however, the Seebeck coefficient does not change much, though the electrical resistivity still decreases with the amount of aluminum increasing; the Seebeck coefficient and electrical resistivity at room temperature are 0.219-0.263 mV/K and 0.26-0.80 Ω·cm, respectively.展开更多
A boron-silicon film was formed from boron trichloride gas and dichlorosilane gas at about 900℃in ambient hydrogen at atmospheric pressure utilizing a slim vertical cold wall chemical vapor deposition reacto...A boron-silicon film was formed from boron trichloride gas and dichlorosilane gas at about 900℃in ambient hydrogen at atmospheric pressure utilizing a slim vertical cold wall chemical vapor deposition reactor designed for the Minimal Fab system. The gas flow rates were 80, 20 and 0.1 - 20 sccm for the hydrogen, dichlorosilane and boron trichloride gases, respectively. The gas transport condition in the reactor was shown to quickly become stable when evaluated by quartz crystal microbalances at the inlet and outlet. The boron-silicon thin film was formed by achieving the various boron concentrations of 0.16% - 80%, the depth profile of which was flat. By observing the cross-sectional TEM image, the obtained film was dense. The boron trichloride gas is expected to be useful for the quick fabrication of various materials containing boron at significantly low and high concentrations.展开更多
Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells are prepared by plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios. The influence of hydrogen ...Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells are prepared by plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios. The influence of hydrogen dilution ratios on electrical characteristics is investigated to study the phase transition from amorphous to microcrystalline silicon. During the deposition process,the optical emission spectroscopy (OES) from plasma is recorded and compared with the Raman spectra of the films,by which the microstructure evolution of different 1-12 dilution ratios and its influence on the performance of μc-Si: H n-i-p solar cells is investigated.展开更多
Low temperature liquid phase epitaxy of silicon thin films was successfully carried out at a temperature of (400~500)℃,using Au/Bi alloy as a Si-saturated Sn solution was used to protect the substrate surface,preven...Low temperature liquid phase epitaxy of silicon thin films was successfully carried out at a temperature of (400~500)℃,using Au/Bi alloy as a Si-saturated Sn solution was used to protect the substrate surface,preventing effectively the oxidation of silicon.The grown Si thin films were identified by SEM,AES and C-V measurements.展开更多
基金摩托罗拉和北京大学的联合研究项目!"Gated-Diode Method Application Development and Sensitivity Analysis"的资助 (合同号 :MSPSESTL
文摘The dependence of the Recombination- Generation( R- G) current on the bulk trap characteristics and sili- con film structure in SOI lateral p+ p- n+ diode has been analyzed num erically by using the simulation tool,DESSIS- ISE.By varying the bulk trap characteristics such as the trap density and energy level spectrum systematically,the dependence of the R- G current on both of them has been dem onstrated in details.Moreover,the silicon film doping concentration and thickness are changed to make silicon body varies from the fully- depletion m ode into the partial- ly- depletion one.The influence of the transfer of silicon body characteristics on the R- G currenthas also been care- fully examined.A better understanding is obtained of the behavior of bulk trap R- G current in the SOI lateral gat- ed- diode.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10575039) and the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (No.2004057408).
文摘Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substrates can greatly affect the crystalline orientation, and the μc-Si:H films are comprised of small particles. Thickness detection by surface profilometry shows that the thin μc-Si:H films are homogenous in large scale. Distributions of both ion density and electron temperature are found to be uniform in the vicinity of substrate by means of diagnosis of Langmuir probe. Based on these experimental results, it can be proposed that rough surfaces play important roles in the crystalline network formation and Ar can affect the reaction process and improve the characteristics of μc-Si:H films. Also, ICP reactor can deposit the thin film in large scale.
基金National Natural Science Foundation of China (Nos.60407013,60876081)the Shanghai-Applied Materials Research and Development Fund of China (No.06SA04)the National High Technology Research and Development Program of China (Nos.2009AA04Z317,2007AA04Z354-03)
文摘Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness of the film was measured by atomic force microscope (AFM) and the relevant results were analyzed using the surface smoothing mechanism of film deposition. It is shown that an α-Si:H film with smooth surface morphology can be obtained by increasing the PH3/N2 gas flow rate for 10% in a high frequency (HF) mode. For high power, however, the surface morphology of the film will deteriorate when the Sill4 gas flow rate increases. Furthermore, optimized parameters of PECVD for growing the film with smooth surface were obtained to be Sill4:25 sccm (standard cubic centimeters per minute), At: 275 sccm, 10%PH3/N2:2 sccm, HF power: 15 W, pressure: 0.9 Torr and temperature: 350℃. In addition, for in thick fihn deposition on silicon substrate, a N20 and NH3 preprocessing method is proposed to suppress the formation of gas bubbles.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374313)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11504392)
文摘The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous feed-stocks. In this work, we show an approach to preparing seeded substrates for layer-transferrable silicon films. The commercial silicon wafers are used as mother substrates, on which periodically patterned silicon rod arrays are fabricated, and all of the surfaces of the wafers and rods are sheathed by thermal silicon oxide. Thermal evaporated aluminum film is used to fill the gaps between the rods and as the stiff mask, while polymethyl methacrylate (PMMA) and photoresist are used as the soft mask to seal the gap between the filled aluminum and the rods. Under the joint resist of the stiff and soft masks, the oxide on the rod head is selectively removed by wet etching and the seed site is formed on the rod head. The seeded substrate is obtained after the removal of the masks. This joint mask technique will promote the endeavor of the exploration of mechanically stable, unlimitedly reusable substrates for the kerfless technology.
基金This project was financially supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (No.0329571B).
文摘A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, the capping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification.
基金supported by the National Natural Science Foundation of China (Grant No 60776009)
文摘Silicon films were grown on aluminium-coated glass by inductively coupled plasma CVD at room temperature using a mixture of SiH4 and H2 as the source gas. The microstructure of the films was evaluated using Raman spectroscopy, scanning electron microscopy and atomic force microscopy. It was found that the films are composed of columnar grains and their surfaces show a random and uniform distribution of silicon nanocones. Such a microstructure is highly advantageous to the application of the films in solar cells and electron emission devices. Field electron emission measurement of the films demonstrated that the threshold field strength is as low as -9.8V/μm and the electron emission characteristic is reproducible. In addition, a mechanism is suggested for the columnar growth of crystalline silicon films on aluminium-coated glass at room temperature.
基金supported by National Natural Science Foundation of China(Nos.11175024,11375031),2011BAD24B01,KM 201110015008,KM 201010015005,BIGC Key Project(No.23190113051)and PHR20110516,PHR201107145
文摘The plasma parameters in ICP-CVD system with internal low inductance antennas(LIA) were diagnosed by Langmuir probe.The ions density(Ni) reached 1011-1012 cm-3,and the electron temperature(Te) was below ca.2 eV,which was slightly decreased with applied power.A p-type hydrogenated microcrystalline silicon(μc-Si:H) film was prepared on glass substrate.After optimization of the processing parameters in flow ratio of SiH4:B2H6:H2,a high quality μc-Si:H film with deposition rate above 1.0 nm/s was achieved in this work.
基金Project supported by the National Natural Science Foundation of China (Grant No 10432050).
文摘The B- and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD). The microstructures of doped nc-Si'H films are carefully and systematically characterized by using high resolution electron microscopy (HREM), Raman scattering, x-ray diffraction (XRD), Auger electron spectroscopy (AES), and resonant nucleus reaction (RNR). The results show that as the doping concentration of PH3 increases, the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously. For the B-doped samples, as the doping concentration of B2H6 increases, no obvious change in the value of d is observed, but the value of Xc is found to decrease. This is especially apparent in the case of heavy B2H6 doped samples, where the films change from nanocrystalline to amorphous.
基金This work was supported by National Key Basic Research and Development Programme of China(No.G2000028202 and No.G2000028203)the Science and Technology Program of Jiangmen City,Guangdong Provincethe Scientifie Research Program of Jinan University for Excellents(No.51204056).
文摘Raman scattering spectroscopy and scanning electron microscopy (SEM) techniques were used to determine the structural properties of two typical series of microc rystalline silicon (μc-Si:H) films deposited at different VHF plasma power and different working gas pressure by very high frequency plasma enhanced chemical v apor deposition (VHF-PECVD) technique. Raman spectra measurements show that both crystalline volume fraction Xc and average grain size d of μc-Si : H films ar e strongly affected by the two deposition conditions and are more sensitive to w orking gas pressure than VHF plasma power. SEM characterizations have further co nfirmed that VHF plasma power and working gas pressure could clearly enhance the surface roughness of μc-Si : H films ascribing to polymerization reactions, w hich is also more sensitive to working gas pressure than VHF plasma power.
基金the National Natural Science Foundation of china(No.50372060)
文摘Hydrogenated amorphous silicon (a-Si: H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD) in (SiH4+H2) atmosphere at room temperature. Results of the thickness measurement, SEM (scanning electron microscope), Raman, and FTIR (Fourier transform infrared spectroscopy) show that with the increase in the applied peak voltage, the deposition rate and network order of the films increase, and the hydrogen bonding configurations mainly in di-hydrogen (Si-H2) and poly hydrogen (SiH2)n are introduced into the films. The UV-visible transmission spectra show that with the decrease in SiH4/ (SiHn+H2) the thin films' band gap shifts from 1.92 eV to 2.17 eV. These experimental results are in agreement with the theoretic analysis of the DBD discharge. The deposition of a-Si: H films by the DBD-CVD method as reported here for the first time is attractive because it allows fast deposition of a-Si: H films on large-area low-melting-point substrates and requires only a low cost of production without additional heating or pumping equipment.
基金granted by Frontier Materials and Micro/Nano Science and Technology Center,National Cheng Kung University,Taiwan,R.O.C
文摘The nanoindentations were applied to island-shaped regions with metal-induced Si crystallizations. The experimental stress-strain relationship is obtained from the load-depth profile in order to investigate the critical stresses arising at various phase transitions. The stress and strain values at various indentation depths are applied to determine the Gibbs free energy at various phases. The intersections of the Gibbs free energy lines are used to determine the possible paths of phase transitions arising at various indentation depths. All the critical contact stresses corresponding to the various phase transitions at four annealing temperatures were found to be consistent with the experimental results.
基金Projects(51505050,51805063) supported by the National Natural Science Foundation of China for Young ScholarsProjects(KJ1500942,KJQN201801134) supported by the Scientific and Technological Research Program of Chongqing Education Commission of ChinaProjects(cstc2017jcyjAX0075,cstc2015jcyj A50033) supported by the Chongqing Research Program of Basic Research and Frontier Technology,China
文摘Hydrogenated microcrystalline silicon(μc-Si:H)films were prepared on glass and silicon substrates by radio frequency magnetron sputtering at 100°C using a mixture of argon(Ar)and hydrogen(H2)gasses as precursor gas.The effects of the ratio of hydrogen flow(H2/(Ar+H2)%)on the microstructure were evaluated.Results show that the microstructure,bonding structure,and surface morphology of theμc-Si:H films can be tailored based on the ratio of hydrogen flow.An amorphous to crystalline phase transition occurred when the ratio of hydrogen flow increased up to 50%.The crystallinity increased and tended to stabilize with the increase in ratio of hydrogen flow from 40%to 70%.The surface roughness of thin films increased,and total hydrogen content decreased as the ratio of hydrogen flow increased.Allμc-Si:H films have a preferred(111)orientation,independent of the ratio of hydrogen flow.And theμc-Si:H films had a dense structure,which shows their excellent resistance to post-oxidation.
基金This work was supported by the National Key Basic Research and Development Programme of China (No. G2000028202 and G2000028203) Guangdong Provincial Natural Science Foundation of China (No. 05300378) Programme on Natural Science of Jinan University (No. 51204056).
文摘Raman spectra and scanning electron microscope (SEM) techniques were used to determine the structural properties of microcrb'stalline silicon (μc-Si:H) films deposited on different substrates with the very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique. Using the Raman spectra, the values of crystalline volume fraction Xc and average grain size d are 86%, 12.3nm; 65%, 5.45nm; and 38%, 4.05nm, for single crystalline silicon wafer, coming 7059 glass, and general optical glass substrates, respectively. The SEM images further demonstrate the substrate effect on the film surface roughness. For the single crystalline silicon wafer and Coming 7059 glass, the surfaces of the μc-Si:H films are fairly smooth because of the homogenous growth or h'ttle lattice mismatch. But for general optical glass, the surface of the μ-Si: H film is very rough, thus the growing surface roughness affects the crystallization process and determines the average grain size of the deposited material. Moreover, with the measurements of thickness, photo and dark conductivity, photosensitivity and activation energy, the substrate effect on the deposition rate, optical and electrical properties of the μc-Si:H thin films have also been investigated. On the basis of the above results, it can be concluded that the substrates affect the initial growing layers acting as a seed for the formation of a crystalline-like material and then the deposition rates, optical and electrical properties are also strongly influenced, hence, deposition parameter optimization is the key method that can be used to obtain a good initial growing layer, to realize the deposition of μc-Si:H films with device-grade quality on cheap substrates such as general glass.
文摘Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour deposition system under the different deposition conditions. It was proposed that there was no direct correlation between the photosensitivity and the hydrogen content (CH) as well as H-Si bonding configurations, but for the stability, they were the critical factors. The experimental results indicated that higher substrate temperature, hydrogen dilution ratio and lower deposition rate played an important role in improving the microstructure of a-Si:H films. We used hydrogen elimination model to explain our experimental results.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2006CB202601)the Natural Science Research Program of the Education Bureau of Henan Province of China(Grant No.2009A140007)
文摘The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy, spectroscopic ellipsometer and atomic force mi- croscopy. It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH4 and the amorphous induction of glass surface during the initial ignition process, and growth of the incubation layer can be suppressed and uniform μc-Si:H phase is generated by the application of delayed initial SiH4 density and silane profiling methods.
文摘The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.
基金financially supported by the Ministry of Science and Technology of China under a Joint Research Program of China-Japan-Korea(No.2010DFA62170)the National Natural Science Foundation of China(No.51172123)
文摘Aluminum-induced crystallized silicon films were prepared on glass substrates by magnetron sputtering. Aluminum was added in the silicon films intermittently by the regular pulse sputtering of an aluminum target. The amount of aluminum in the silicon films can be controlled by regulating the aluminum sputtering power and the sputtering time of the undoped silicon layer; thus, the Seebeck coefficient and electrical resistivity of the polyerystaUine silicon films can be adjusted. It is found that, when the sputtering power ratio of aluminum to silicon is 16%, both the Seebeck coefficient and the electrical resistivity decrease with the increasing amount of aluminum as expected; the Seebeck coefficient and the electrical resistivity at room temperature are 0.185-0.285 mV/K and 0.30-2.4 Ω.cm, respectively. By reducing the sputtering power ratio to 7%, however, the Seebeck coefficient does not change much, though the electrical resistivity still decreases with the amount of aluminum increasing; the Seebeck coefficient and electrical resistivity at room temperature are 0.219-0.263 mV/K and 0.26-0.80 Ω·cm, respectively.
文摘A boron-silicon film was formed from boron trichloride gas and dichlorosilane gas at about 900℃in ambient hydrogen at atmospheric pressure utilizing a slim vertical cold wall chemical vapor deposition reactor designed for the Minimal Fab system. The gas flow rates were 80, 20 and 0.1 - 20 sccm for the hydrogen, dichlorosilane and boron trichloride gases, respectively. The gas transport condition in the reactor was shown to quickly become stable when evaluated by quartz crystal microbalances at the inlet and outlet. The boron-silicon thin film was formed by achieving the various boron concentrations of 0.16% - 80%, the depth profile of which was flat. By observing the cross-sectional TEM image, the obtained film was dense. The boron trichloride gas is expected to be useful for the quick fabrication of various materials containing boron at significantly low and high concentrations.
基金the State Key Development Program for Basic Research of China(Nos.2006CB202602,2006CB202603)Tianjin Assistant Foundation for the National Basic Research Program of China(No.07QTPTJC29500)~~
文摘Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells are prepared by plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios. The influence of hydrogen dilution ratios on electrical characteristics is investigated to study the phase transition from amorphous to microcrystalline silicon. During the deposition process,the optical emission spectroscopy (OES) from plasma is recorded and compared with the Raman spectra of the films,by which the microstructure evolution of different 1-12 dilution ratios and its influence on the performance of μc-Si: H n-i-p solar cells is investigated.
文摘Low temperature liquid phase epitaxy of silicon thin films was successfully carried out at a temperature of (400~500)℃,using Au/Bi alloy as a Si-saturated Sn solution was used to protect the substrate surface,preventing effectively the oxidation of silicon.The grown Si thin films were identified by SEM,AES and C-V measurements.