Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-d...Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.展开更多
The mismatch between the photovoltaic(PV)cells absorption and the solar irradiance on earth is one of the major limitations towards more efficient PV energy conversion.This aspect was addressed by downshifting the sol...The mismatch between the photovoltaic(PV)cells absorption and the solar irradiance on earth is one of the major limitations towards more efficient PV energy conversion.This aspect was addressed by downshifting the solar irradiance on Earth through luminescent down-shifting layers based on lanthanidedoped surface-functionalized ionosilicas(ISs)embedded in poly(methyl methacrylate)(PMMA)coated on the surface of commercial Si-based PV cells.The IS-PMMA hybrid materials exhibit efficient solar radiation harvesting(spectral overlap of^9.5×10^19 photons/(s·m2))and conversion(quantum yield^52%).The direct solar radiation and the down-shifted radiation are partially guided and lost through total internal reflection to the layer edges being unavailable for PV conversion of the coated PV cell.By tuning the down-shifting layer thickness,it also acts as luminescent solar concentrator enabling the collection of the guided radiation by flexible PV cells applied on the borders of the down-shifting layer leading to an enhancement of the PV energy conversion from^5%(in the case of the single-use of the luminescent down-shifting layer)to^13%comparing with the bare PV cell.The overall electrical output of the device resulted in an absolute external quantum efficiency increase of^32%for the optimized Eu^3+-based films in the UV spectral region(compared with the bare PV device,which is among the best values reported so far).展开更多
基金the talent project of ZJU-Hangzhou Global Scientific and Technological Innovation Center(No.02170000-K02013017)project of National Natural Science Foundation of China(No.61721005)
文摘Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.
基金Project supported by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership in the frame of Operational Competitiveness and Internationalization Programme(projects UIDB/50011/2020&UIDP/50011/2020,UID/EEA/50008/2020,UID/QUI/50006/2019,CENTRO-01-0145-FEDER-030186,CENTRO-01-0145-FEDER-000005,Pest-OE/QUI/UI0616/2014,POCI-01-0145-FEDER-016884,PTDC/CTM-NAN/0956/2014,UID/QUI/00686/2016,UID/QUI/00686/2018,UID/QUI/00686/2019 and NORTE-01-0145-FEDER-030858)。
文摘The mismatch between the photovoltaic(PV)cells absorption and the solar irradiance on earth is one of the major limitations towards more efficient PV energy conversion.This aspect was addressed by downshifting the solar irradiance on Earth through luminescent down-shifting layers based on lanthanidedoped surface-functionalized ionosilicas(ISs)embedded in poly(methyl methacrylate)(PMMA)coated on the surface of commercial Si-based PV cells.The IS-PMMA hybrid materials exhibit efficient solar radiation harvesting(spectral overlap of^9.5×10^19 photons/(s·m2))and conversion(quantum yield^52%).The direct solar radiation and the down-shifted radiation are partially guided and lost through total internal reflection to the layer edges being unavailable for PV conversion of the coated PV cell.By tuning the down-shifting layer thickness,it also acts as luminescent solar concentrator enabling the collection of the guided radiation by flexible PV cells applied on the borders of the down-shifting layer leading to an enhancement of the PV energy conversion from^5%(in the case of the single-use of the luminescent down-shifting layer)to^13%comparing with the bare PV cell.The overall electrical output of the device resulted in an absolute external quantum efficiency increase of^32%for the optimized Eu^3+-based films in the UV spectral region(compared with the bare PV device,which is among the best values reported so far).