A multi-scale numerical method coupled with the reactor,sheath and trench model is constructed to simulate dry etching of SiO_2 in inductively coupled C_4F_8 plasmas.Firstly,ion and neutral particle densities in the r...A multi-scale numerical method coupled with the reactor,sheath and trench model is constructed to simulate dry etching of SiO_2 in inductively coupled C_4F_8 plasmas.Firstly,ion and neutral particle densities in the reactor are decided using the CFD-ACE+ commercial software.Then,the ion energy and angular distributions(IEDs and IADs) are obtained in the sheath model with the sheath boundary conditions provided with CFD-ACE+.Finally,the trench profile evolution is simulated in the trench model.What we principally focus on is the effects of the discharge parameters on the etching results.It is found that the discharge parameters,including discharge pressure,radio-frequency(rf) power,gas mixture ratios,bias voltage and frequency,have synergistic effects on IEDs and IADs on the etched material surface,thus further affecting the trench profiles evolution.展开更多
Dry etching of silicon is an essential process step for the fabrication of Micro electromechancal system (MEMS). The AZ7220 positive photo-resist was used as the etching mask and silicon micro-trenches were fabricated...Dry etching of silicon is an essential process step for the fabrication of Micro electromechancal system (MEMS). The AZ7220 positive photo-resist was used as the etching mask and silicon micro-trenches were fabricated with a multiplexed indu ctively coupled plasma (ICP) etcher. The influence of resist pattern profile, an d etch condition on sidewall roughness were investigated detail. The results sho w that the sidewall roughness of micro-trench depends on profiles of photo-resis t pattern, the initial interface between the resist bottom surface and silicon s urface heavily. The relationship between roughness and process optimization para meters are presented in the paper. The roughness of the sidewall has been decrea sed to a 20-50nm with this experiment.展开更多
Silicon etching is an essential process in various applications,and a major challenge for etching process is anisotropic high aspect ratio etching characteristics.The etch profile is determined by the plasma parameter...Silicon etching is an essential process in various applications,and a major challenge for etching process is anisotropic high aspect ratio etching characteristics.The etch profile is determined by the plasma parameters and process parameters.In this study,the plasma state with each process parameters were analyzed through the optical emission spectroscopy(OES)plasma diagnostic sensor by both chemical and physical approaches.Electron temperature and electron density were additionally acquired using the corona model with OES data that provides chemical species information,and the etch profile was evaluated through scanning electron microscope measurement data.The results include changes in profile with gas ratio,bias power,and pressure.We figure out that factors like ion energy and ion angular distribution as well as chemical reaction affect the anisotropic profile.展开更多
Mesa width (WM) is a key design parameter for SiC super junction (SJ) Schottky diodes (SBD) fabricated by the trench-etching-and-sidewall-implant method. This paper carries out a comprehensive investigation on h...Mesa width (WM) is a key design parameter for SiC super junction (SJ) Schottky diodes (SBD) fabricated by the trench-etching-and-sidewall-implant method. This paper carries out a comprehensive investigation on how the mesa width design determines the device electrical performances and how it affects the degree of performance degradation induced by process variations. It is found that structures designed with narrower mesa widths can tolerant substantially larger charge imbalance for a given BV target, but have poor specific on-resistances. On the contrary, structures with wider mesa widths have superior on-state performances but their breakdown voltages are more sensitive to p-type doping variation. Medium WM structures (-2 p.m) exhibit stronger robustness against the process variation resulting from SiC deep trench etching. Devices with 2-p.m mesa width were fabricated and electrically characterized. The fabricated SiC SJ SBDs have achieved a breakdown voltage of 1350 V with a specific on-resistance as low as 0.98 mΩ2.cm2. The estimated specific drift on- resistance by subtracting substrate resistance is well below the theoretical one-dimensional unipolar limit of SiC material. The robustness of the voltage blocking capability against trench dimension variations has also been experimentally verified for the proposed SiC SJ SBD devices.展开更多
The fabrication of nano porous silicon, nPSi, using alkali etching process has been studied and carried out. The surface chemistry of anisotropic etching of n-type Si-wafer is reviewed and the anisotropic chemical etc...The fabrication of nano porous silicon, nPSi, using alkali etching process has been studied and carried out. The surface chemistry of anisotropic etching of n-type Si-wafer is reviewed and the anisotropic chemical etching of silicon in alkaline solution using wetting agents is discussed. Transformation of crystallographic plane of n-Si (211) to nPSi (100) has occurred on using n-propanol as wetting agent. The rate of pore formation was 0.02478 - 0.02827 μm/min, which was heavily dependent upon the concentration of the etchant containing wetting agents, allowing patterned porous silicon formation through selective doping of the substrate. A particle size of 15 nm for porous nano-silicon was calculated from the XRD data. Porosity of PS layers is about 10%. Pore diameter and porous layer thickness are 0.0614 nm and 16 μm, respectively. The energy gap of the produced porous silicon is 3.3 eV. Furthermore, the combination of PS with Congo Red, which are nanostructured due to their deposition within the porous matrix is discussed. Such nano compounds offer broad avenue of new and interesting properties depending on the involved materials as well as on their morphology. Chemical route was utilized as the host material to achieve pores filling. They were impregnated with Congo Red, which gave good results for the porous silicon as a promising pH sensor.展开更多
In this paper,the etching characteristics of the ultra-high resistivity silicon(UHRS) by using the Bosch process were investigated.The experimental results indicated that the sulfur hexafluoride flux,the temperature...In this paper,the etching characteristics of the ultra-high resistivity silicon(UHRS) by using the Bosch process were investigated.The experimental results indicated that the sulfur hexafluoride flux,the temperature of the substrate,the platen power and the etching intermittence had important influence on the etching rate and the etching morphology of the UHRS.The profiles and morphologies of sidewall were characterized with scanning electron microscopy(SEM).By using an improved three-stage Bosch process,380-μm deep through holes were fabricated on the UHRS with the average etching rate of about 3.14 μm/min.Meanwhile,the fabrication mechanism of deep through holes on the UHRS by using the three-stage Bosch process was illustrated on the basis of the experimental results.展开更多
基金supported by National Natural Science Foundation of China(No.11375040)the Important National Science&Technology Specific Project of China(No.2011ZX02403-002)
文摘A multi-scale numerical method coupled with the reactor,sheath and trench model is constructed to simulate dry etching of SiO_2 in inductively coupled C_4F_8 plasmas.Firstly,ion and neutral particle densities in the reactor are decided using the CFD-ACE+ commercial software.Then,the ion energy and angular distributions(IEDs and IADs) are obtained in the sheath model with the sheath boundary conditions provided with CFD-ACE+.Finally,the trench profile evolution is simulated in the trench model.What we principally focus on is the effects of the discharge parameters on the etching results.It is found that the discharge parameters,including discharge pressure,radio-frequency(rf) power,gas mixture ratios,bias voltage and frequency,have synergistic effects on IEDs and IADs on the etched material surface,thus further affecting the trench profiles evolution.
文摘Dry etching of silicon is an essential process step for the fabrication of Micro electromechancal system (MEMS). The AZ7220 positive photo-resist was used as the etching mask and silicon micro-trenches were fabricated with a multiplexed indu ctively coupled plasma (ICP) etcher. The influence of resist pattern profile, an d etch condition on sidewall roughness were investigated detail. The results sho w that the sidewall roughness of micro-trench depends on profiles of photo-resis t pattern, the initial interface between the resist bottom surface and silicon s urface heavily. The relationship between roughness and process optimization para meters are presented in the paper. The roughness of the sidewall has been decrea sed to a 20-50nm with this experiment.
基金supported by the Koran Ministry of Trade,Industry&Energy(MOTIE:GID:20006499)via KSRC(Korea Semiconductor Research Consortium)support program。
文摘Silicon etching is an essential process in various applications,and a major challenge for etching process is anisotropic high aspect ratio etching characteristics.The etch profile is determined by the plasma parameters and process parameters.In this study,the plasma state with each process parameters were analyzed through the optical emission spectroscopy(OES)plasma diagnostic sensor by both chemical and physical approaches.Electron temperature and electron density were additionally acquired using the corona model with OES data that provides chemical species information,and the etch profile was evaluated through scanning electron microscope measurement data.The results include changes in profile with gas ratio,bias power,and pressure.We figure out that factors like ion energy and ion angular distribution as well as chemical reaction affect the anisotropic profile.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0400502)the National Natural Science Foundation of China(Grant Nos.U1766222 and 51777187)
文摘Mesa width (WM) is a key design parameter for SiC super junction (SJ) Schottky diodes (SBD) fabricated by the trench-etching-and-sidewall-implant method. This paper carries out a comprehensive investigation on how the mesa width design determines the device electrical performances and how it affects the degree of performance degradation induced by process variations. It is found that structures designed with narrower mesa widths can tolerant substantially larger charge imbalance for a given BV target, but have poor specific on-resistances. On the contrary, structures with wider mesa widths have superior on-state performances but their breakdown voltages are more sensitive to p-type doping variation. Medium WM structures (-2 p.m) exhibit stronger robustness against the process variation resulting from SiC deep trench etching. Devices with 2-p.m mesa width were fabricated and electrically characterized. The fabricated SiC SJ SBDs have achieved a breakdown voltage of 1350 V with a specific on-resistance as low as 0.98 mΩ2.cm2. The estimated specific drift on- resistance by subtracting substrate resistance is well below the theoretical one-dimensional unipolar limit of SiC material. The robustness of the voltage blocking capability against trench dimension variations has also been experimentally verified for the proposed SiC SJ SBD devices.
文摘The fabrication of nano porous silicon, nPSi, using alkali etching process has been studied and carried out. The surface chemistry of anisotropic etching of n-type Si-wafer is reviewed and the anisotropic chemical etching of silicon in alkaline solution using wetting agents is discussed. Transformation of crystallographic plane of n-Si (211) to nPSi (100) has occurred on using n-propanol as wetting agent. The rate of pore formation was 0.02478 - 0.02827 μm/min, which was heavily dependent upon the concentration of the etchant containing wetting agents, allowing patterned porous silicon formation through selective doping of the substrate. A particle size of 15 nm for porous nano-silicon was calculated from the XRD data. Porosity of PS layers is about 10%. Pore diameter and porous layer thickness are 0.0614 nm and 16 μm, respectively. The energy gap of the produced porous silicon is 3.3 eV. Furthermore, the combination of PS with Congo Red, which are nanostructured due to their deposition within the porous matrix is discussed. Such nano compounds offer broad avenue of new and interesting properties depending on the involved materials as well as on their morphology. Chemical route was utilized as the host material to achieve pores filling. They were impregnated with Congo Red, which gave good results for the porous silicon as a promising pH sensor.
基金Project supported by the National Natural Science Foundation of China(Nos.61574108,61574112,61504099)
文摘In this paper,the etching characteristics of the ultra-high resistivity silicon(UHRS) by using the Bosch process were investigated.The experimental results indicated that the sulfur hexafluoride flux,the temperature of the substrate,the platen power and the etching intermittence had important influence on the etching rate and the etching morphology of the UHRS.The profiles and morphologies of sidewall were characterized with scanning electron microscopy(SEM).By using an improved three-stage Bosch process,380-μm deep through holes were fabricated on the UHRS with the average etching rate of about 3.14 μm/min.Meanwhile,the fabrication mechanism of deep through holes on the UHRS by using the three-stage Bosch process was illustrated on the basis of the experimental results.