In this paper, an analytical model to investigate the parametric amplification (PA) and the PA + stimulated Raman scattering (SRS) in silicon waveguides is put forward. When two pump signals are employed, the PA ...In this paper, an analytical model to investigate the parametric amplification (PA) and the PA + stimulated Raman scattering (SRS) in silicon waveguides is put forward. When two pump signals are employed, the PA bandwidth of the probe signal is so large that the Raman contribution has to be considered. When Raman contribution fraction f is set to be 0, only the PA occurs to amplify the probe signal, and when f is set to be 0.043, the PA and the SRS amplify the probe signal at the same time. The signal amplifications of both single and dual pump schemes are investigated by using this model. With this model, three main affecting factors, i.e., zero dispersion wavelength (ZDWL), third-order dispersion (TOD), and fourth-order dispersion (FOD), are discussed in detail.展开更多
The performances of a dual-pump parametric and Raman amplification process and the wavelength conversion in silicon waveguides are investigated. By setting the Raman contribution fraction f to be 0.043 in our analytic...The performances of a dual-pump parametric and Raman amplification process and the wavelength conversion in silicon waveguides are investigated. By setting the Raman contribution fraction f to be 0.043 in our analytical model, the amplification gain of the probe signal can be obtained to be over 10 dB. The pump transfer noise (PTN), the quantum noise (QN), and the total noise figure (TNF) are discussed, and the TNF has a constant value of about 4 dB in the gain bandwidth. An idler signal generated during the parametric amplification (PA) process can be used to realize the wavelength conversion in wavelength division multiplexing (WDM) systems. In addition, the pump signal parameters, the generated free carrier lifetime and effective mode area (EMA) of the waveguide are analysed for the optimization of signal gain and noise characteristics.展开更多
A quasi-two-dimensional layer of MoS2 was placed on top of a silicon optical waveguide to form a MoS2–silicon hybrid structure. Chirped pulse self-phase modulation measurements were carried out to determine the optic...A quasi-two-dimensional layer of MoS2 was placed on top of a silicon optical waveguide to form a MoS2–silicon hybrid structure. Chirped pulse self-phase modulation measurements were carried out to determine the optica Kerr nonlinearity of the structure. The observed increase in the spectral broadening of the optical pulses in the MoS2–silicon waveguide compared with the silicon waveguides indicated that the third-order nonlinear effect in MoS2 is about 2 orders of magnitude larger than that in silicon. The measurements show that MoS2 has an effective optical Kerr coefficient of about 1.1 × 10-16m2∕W. This work reveals the potential application of MoS2 to enhance the nonlinearity of hybrid silicon optical devices.展开更多
A novel design of a two-channel optical add-drop multiplexer based on a self-rolled-up microtube (SRM) is presented. This design consists of an SRM that has a parabolic lobe-like pattern along the tube's axial dire...A novel design of a two-channel optical add-drop multiplexer based on a self-rolled-up microtube (SRM) is presented. This design consists of an SRM that has a parabolic lobe-like pattern along the tube's axial direction, as well as straight silicon waveguides and a 180° waveguide bend. The vertical configuration of the SRM and waveguides is analyzed by the coupled mode theory for achieving the optinmm gap. In the critical coupling regime, when the device serves as an optical demultiplexer, the minimum insertion loss is 1.94 dB, and the maximunl channel crosstalk is -6.036 dB. Also, as an optical multiplexer, the maximum crosstalk becomes -11.9 dB.展开更多
With progress in fabrication technology, integrated photonics plays an increasingly important role in high-speed optical communications, from monolithic transmitters and receivers for advanced optical modulation forma...With progress in fabrication technology, integrated photonics plays an increasingly important role in high-speed optical communications, from monolithic transmitters and receivers for advanced optical modulation formats to on-chip subsystems for optical signal processing. We review our recent work on the highly tailorable physical properties of silicon waveguides for communication and signal processing applications, using slot structures. Controllable chromatic dispersion, nonlinearity, and polarization properties of the waveguides are presented, and the enabled wideband wavelength conversion, optical tunable delay, and signal processing of polarization-multiplexing data channels are discussed.展开更多
The photocurrent effect in pin silicon waveguides at 1550 nm wavelength is experimentally investigated. The photocurrent is mainly attributed to surface-state absorption,defect-state absorption and/or two-photon absor...The photocurrent effect in pin silicon waveguides at 1550 nm wavelength is experimentally investigated. The photocurrent is mainly attributed to surface-state absorption,defect-state absorption and/or two-photon absorption.Experimental results show that the photocurrent is enhanced by the avalanche effect.A pin silicon waveguide with an intrinsic region width of 3.4μm and a length of 2000μm achieves a responsivity of 4.6 mA/W and an avalanche multiplication factor of about five.展开更多
To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes ...To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.展开更多
An all-optical analog-to-digital converter (ADC) based on the nonlinear effect in a silicon waveguide is a promising candidate for overcoming the limitation of electronic devices and is suitable for photonic integra...An all-optical analog-to-digital converter (ADC) based on the nonlinear effect in a silicon waveguide is a promising candidate for overcoming the limitation of electronic devices and is suitable for photonic integration. In this paper, a lumped time-delay compensation scheme with 2-bit quantization resolution is proposed. A strip silicon waveguide is designed and used to compensate for the entire time-delays of the optical pulses after a soliton self-frequency shift (SSFS) module within a wavelength range of 1550 nm-1580 nm. A dispersion coefficient as high as -19800 ps/(km.nm) with +0.5 ps/(km.nm) variation is predicted for the strip waveguide. The simulation results show that the maximum supportable sampling rate (MSSR) is 50.45 GSa/s with full width at half maximum (FWHM) variation less than 2.52 ps, along with the 2-bit effective- number-of-bit and Gray code output.展开更多
Electron beam lithography(EBL) is a key technology in the fabrication of nanoscale silicon optical waveguide. The influence of exposure dose, the main process parameter of EBL, on the structure profile of poly-methyl ...Electron beam lithography(EBL) is a key technology in the fabrication of nanoscale silicon optical waveguide. The influence of exposure dose, the main process parameter of EBL, on the structure profile of poly-methyl methacrylate(PMMA) after development was studied using a silicon on insulator(SOI) wafer with 220 nm top silicon as the substrate. The relationship between exposure dose and structure pattern width after development was analyzed according to the measurement results. The optimum exposure dose of 220 μC/cm^(2) was found to obtain a final structure consistent with the designed mask value through subsequent processes. At the same time, according to the image segmentation curve tracking technology, the contour extraction process of the dose test results was carried out, and the relationship among mask design value, exposure dose and two-dimensional roughness of boundary contour was analyzed, which can provide reference for the subsequent electron beam lithography of the same substrate material.展开更多
We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slo...We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slot size are studied in detail. The results show that the optical field in the slot region with metallic gratings is significantly enhanced compared with the traditional slot waveguide due to the surface plasmon polaritons coupling on metallic gratings. The extraordinary optical confinement is attributed to the low effective dielectric constant of metallic gratings. The effective dielectric constant decreases with the increasing wavelength, and reaches the minimum when the width of the metal gap is about 0.01 times the wavelength.展开更多
Microring resonators have been widely used in passive optical devices such as wavelength division multiplexers,differentiators,and integrators.Research on terahertz(THz)components has been accelerated by these photoni...Microring resonators have been widely used in passive optical devices such as wavelength division multiplexers,differentiators,and integrators.Research on terahertz(THz)components has been accelerated by these photonics technologies.Compact and integrated time-domain differentiators that enable low-loss,high-speed THz signal processing are necessary for THz applications.In this study,an on-chip THz temporal differentiator based on all-silicon photonic technology was developed.This device primarily consisted of a microring waveguide resonator and was packaged with standard waveguide compatibility.It performed time-domain differentiation on input signals at a frequency of 405.45 GHz with an insertion loss of 2.5 dB and a working bandwidth of 0.36 GHz.Various periodic waveforms could be handled by this differentiator.This device could work as an edge detector,which detected step-like edges in high-speed input signals through differential effects.This development holds significant promise for future THz data processing technologies and THz communication systems.展开更多
The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,whi...The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing.展开更多
Strong nonlinearity of plasmonic metamaterials can be designed near their effective plasma frequency in the epsilon-near-zero(ENZ) regime. We explore the realization of an all-optical modulator based on the Au nonline...Strong nonlinearity of plasmonic metamaterials can be designed near their effective plasma frequency in the epsilon-near-zero(ENZ) regime. We explore the realization of an all-optical modulator based on the Au nonlinearity using an ENZ cavity formed by a few Au nanorods inside a Si photonic waveguide. The resulting modulator has robust performance with a modulation depth of about 30 dB/μm and loss less than 0.8 dB for switching energies below 600 fJ. The modulator provides a double advantage of high mode transmission and strong nonlinearity enhancement in the few-nanorod-based design.展开更多
We investigate in this paper the influence of slow light on the balance between the Kerr and two-photon absorption(TPA) processes in silicon slotted hybrid nonlinear waveguides. Three typical silicon photonic waveguid...We investigate in this paper the influence of slow light on the balance between the Kerr and two-photon absorption(TPA) processes in silicon slotted hybrid nonlinear waveguides. Three typical silicon photonic waveguide geometries are studied to estimate the influence of the light slow-down factor on the mode field overlap with the silicon region, as well as on the complex effective nonlinear susceptibility. It is found that slotted photonic crystal modes tend to focalize in their hollow core with increasing group index(n_G) values. Considering a hybrid integration of nonlinear polymers in such slotted waveguides, a relative decrease of the TPA process by more factor of 2 is predicted from n_G=10 to n_G=50. As a whole, this work shows that the relative influence of TPA decreases for slotted waveguides operating in the slow light regime, making them a suitable platform for third-order nonlinear optics.展开更多
Two types of 1×2 multi-mode interference (MMI) splitters with splitting ratios of 85:15 and 72:28 are designed. On the basis of a numerical simulation, an optimal length of the MMI section is obtained. Subseq...Two types of 1×2 multi-mode interference (MMI) splitters with splitting ratios of 85:15 and 72:28 are designed. On the basis of a numerical simulation, an optimal length of the MMI section is obtained. Subsequently, the devices are fabricated and tested. The footprints of the rectangular MMI regions are only 3×18.2 and 3×14.3 (#m). The minimum excess losses are 1.4 and 1.1 dB. The results of the test on the splitting ratios are consistent with designed values. The devices can be applied in ultra-compact photonic integrated circuits to realize the "tap" function.展开更多
Here,we designed a broadband,low loss,compact,and fabrication-tolerant silicon-based four-mode edge coupler,composed of a 1×3 adiabatic mode-evolution counter-taper splitter and a triple-tip inverse taper.Based o...Here,we designed a broadband,low loss,compact,and fabrication-tolerant silicon-based four-mode edge coupler,composed of a 1×3 adiabatic mode-evolution counter-taper splitter and a triple-tip inverse taper.Based on mode conversion and power splitting,the proposed structure can simultaneously realize efficient mode coupling from TE_(0),TM_(0),TE_(1),and TM_(1) modes of multimode silicon waveguides to linearly polarized(LP),LP^(01,x),LP_(01,y),LP_(11a,x),and LP_(11a,y),modes in the few-mode fiber.To the best of our knowledge,we proposed the first scheme of four LP modes coupling,which is fully compatible with standard fabrication process.The 3D finite-difference time-domain simulation results show that the on-chip conversion losses of the four modes remain lower than 0.62 dB over the 200 nm wavelength range,and total coupling losses are 4.1 dB,5.1 dB,2.1 dB,and 2.9 dB for TE_(0)-to-LP_(01,x),TM_(0)-to-LP_(01,y),TE_(1)-to-LP_(11a,x),and TM_(1)-to-LP_(11a,y),respectively.Good fabrication tolerance and relaxed critical dimensions make the four-mode edge coupler compatible with standard fabrication process of commercial silicon photonic foundries.展开更多
A novel scheme for the design of an ultra-compact and high-performance optical switch is proposed and investigated numerically. Based on a standard silicon(Si) photonic stripe waveguide, a section of hyperbolic metama...A novel scheme for the design of an ultra-compact and high-performance optical switch is proposed and investigated numerically. Based on a standard silicon(Si) photonic stripe waveguide, a section of hyperbolic metamaterials(HMM) consisting of 20-pair alternating vanadium dioxide (VO_2)∕Si thin layers is inserted to realize the switching of fundamental TE mode propagation. Finite-element-method simulation results show that, with the help of an HMM with a size of 400 nm × 220 nm × 200 nm(width × height × length), the ON/OFF switching for fundamental TE mode propagation in an Si waveguide can be characterized by modulation depth(MD) of5.6 d B and insertion loss(IL) of 1.25 dB. It also allows for a relatively wide operating bandwidth of 215 nm maintaining MD > 5 dB and IL < 1.25 dB. Furthermore, we discuss that the tungsten-doped VO_2 layers could be useful for reducing metal-insulator-transition temperature and thus improving switching performance. In general, our findings may provide some useful ideas for optical switch design and application in an on-chip all-optical communication system with a demanding integration level.展开更多
All-optical two-channel format conversion is proposed and experimentally demonstrated from a 40 Gbit/s polarization multiplexing(Pol-MUX) non-return-to-zero quadrature phase-shift keying(QPSK) signal to Pol-MUX binary...All-optical two-channel format conversion is proposed and experimentally demonstrated from a 40 Gbit/s polarization multiplexing(Pol-MUX) non-return-to-zero quadrature phase-shift keying(QPSK) signal to Pol-MUX binary phase-shift keying(BPSK) signals by using phase-doubled four-wave mixing effects with two polarization-angled pumps in a silicon waveguide. The eye diagrams and constellation diagrams of the original QPSK sequences and the converted BPSK sequences of each channel are clearly observed on the two polarization states. Moreover,the bit error rates(BERs) of the two converted idlers are measured. The power penalties of all these converted BPSK sequences on both X and Y polarization states are less than 3.4 dB at a BER of 3.8 × 10^(-3).展开更多
A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16...A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16-quadrature amplitude modulation(QAM) signals at 16 GBd is demonstrated with an optical signal-to-noise ratio penalty below 0.7 dB. High-quality converted signals are generated thanks to the low polarization dependence(≤0.5 dB) and the high conversion efficiency(CE) achievable. The strong Kerr nonlinearity in silicon and the decrease of detrimental free-carrier absorption due to the reverse-biased p-i-n diode are key in ensuring high CE levels.展开更多
Changes in refractive index and the corresponding changes in the characteristics of an optical waveguide in enabling propagation of light are the basis for many modern silicon photonic devices. Optical properties of t...Changes in refractive index and the corresponding changes in the characteristics of an optical waveguide in enabling propagation of light are the basis for many modern silicon photonic devices. Optical properties of these active nanoscale waveguides are sensitive to the little changes in geometry, external injection/biasing, and doping profiles, and can be crucial in design and manufacturing processes. This paper brings the active silicon waveguide for complete characterization of various distinctive guiding parameters, including perturbation in real and imaginary refractive index, mode loss, group velocity dispersion, and bending loss, which can be instrumental in developing optimal design specifications for various application-centric active silicon waveguides.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2010CB327605)the Discipline Co-construction Project of Beijing Municipal Commission of Education, China (Grant No. YB20081001301)the Fundamental Research Funds for Central Universities, China (Grant No. 2011RC008)
文摘In this paper, an analytical model to investigate the parametric amplification (PA) and the PA + stimulated Raman scattering (SRS) in silicon waveguides is put forward. When two pump signals are employed, the PA bandwidth of the probe signal is so large that the Raman contribution has to be considered. When Raman contribution fraction f is set to be 0, only the PA occurs to amplify the probe signal, and when f is set to be 0.043, the PA and the SRS amplify the probe signal at the same time. The signal amplifications of both single and dual pump schemes are investigated by using this model. With this model, three main affecting factors, i.e., zero dispersion wavelength (ZDWL), third-order dispersion (TOD), and fourth-order dispersion (FOD), are discussed in detail.
基金supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB327605)the Discipline Co-construction Project of Beijing Municipal Commission of Education, China (Grant No. YB20081001301)the Fundamental Research Funds for Central Universities, China (Grant Nos. 2011RC008 and 2009RC0314)
文摘The performances of a dual-pump parametric and Raman amplification process and the wavelength conversion in silicon waveguides are investigated. By setting the Raman contribution fraction f to be 0.043 in our analytical model, the amplification gain of the probe signal can be obtained to be over 10 dB. The pump transfer noise (PTN), the quantum noise (QN), and the total noise figure (TNF) are discussed, and the TNF has a constant value of about 4 dB in the gain bandwidth. An idler signal generated during the parametric amplification (PA) process can be used to realize the wavelength conversion in wavelength division multiplexing (WDM) systems. In addition, the pump signal parameters, the generated free carrier lifetime and effective mode area (EMA) of the waveguide are analysed for the optimization of signal gain and noise characteristics.
基金funded by Hong Kong Research Grants Council research project nos. GRF416913, N_CUHK405/12, Ao E/P-02/12, CUHK1/CRF/12G
文摘A quasi-two-dimensional layer of MoS2 was placed on top of a silicon optical waveguide to form a MoS2–silicon hybrid structure. Chirped pulse self-phase modulation measurements were carried out to determine the optica Kerr nonlinearity of the structure. The observed increase in the spectral broadening of the optical pulses in the MoS2–silicon waveguide compared with the silicon waveguides indicated that the third-order nonlinear effect in MoS2 is about 2 orders of magnitude larger than that in silicon. The measurements show that MoS2 has an effective optical Kerr coefficient of about 1.1 × 10-16m2∕W. This work reveals the potential application of MoS2 to enhance the nonlinearity of hybrid silicon optical devices.
文摘A novel design of a two-channel optical add-drop multiplexer based on a self-rolled-up microtube (SRM) is presented. This design consists of an SRM that has a parabolic lobe-like pattern along the tube's axial direction, as well as straight silicon waveguides and a 180° waveguide bend. The vertical configuration of the SRM and waveguides is analyzed by the coupled mode theory for achieving the optinmm gap. In the critical coupling regime, when the device serves as an optical demultiplexer, the minimum insertion loss is 1.94 dB, and the maximunl channel crosstalk is -6.036 dB. Also, as an optical multiplexer, the maximum crosstalk becomes -11.9 dB.
基金research work sponsored by DARPA (under contract number HR0011-09-C-0124)and HP Laboratories
文摘With progress in fabrication technology, integrated photonics plays an increasingly important role in high-speed optical communications, from monolithic transmitters and receivers for advanced optical modulation formats to on-chip subsystems for optical signal processing. We review our recent work on the highly tailorable physical properties of silicon waveguides for communication and signal processing applications, using slot structures. Controllable chromatic dispersion, nonlinearity, and polarization properties of the waveguides are presented, and the enabled wideband wavelength conversion, optical tunable delay, and signal processing of polarization-multiplexing data channels are discussed.
基金supported by the Natural Basic Research Program of China(No.2013CB632105)the National Natural Science Foundation of China(No.61177055)
文摘The photocurrent effect in pin silicon waveguides at 1550 nm wavelength is experimentally investigated. The photocurrent is mainly attributed to surface-state absorption,defect-state absorption and/or two-photon absorption.Experimental results show that the photocurrent is enhanced by the avalanche effect.A pin silicon waveguide with an intrinsic region width of 3.4μm and a length of 2000μm achieves a responsivity of 4.6 mA/W and an avalanche multiplication factor of about five.
基金supported by Natural Science Foundation of Gansu Province(No.22JR5RA320).
文摘To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.
基金supported by the Fundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-15-030A1)China Postdoctoral Science Foundation(Grant No.2015M580978)
文摘An all-optical analog-to-digital converter (ADC) based on the nonlinear effect in a silicon waveguide is a promising candidate for overcoming the limitation of electronic devices and is suitable for photonic integration. In this paper, a lumped time-delay compensation scheme with 2-bit quantization resolution is proposed. A strip silicon waveguide is designed and used to compensate for the entire time-delays of the optical pulses after a soliton self-frequency shift (SSFS) module within a wavelength range of 1550 nm-1580 nm. A dispersion coefficient as high as -19800 ps/(km.nm) with +0.5 ps/(km.nm) variation is predicted for the strip waveguide. The simulation results show that the maximum supportable sampling rate (MSSR) is 50.45 GSa/s with full width at half maximum (FWHM) variation less than 2.52 ps, along with the 2-bit effective- number-of-bit and Gray code output.
基金Project(52175445) supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2020-09) supported by the State Key Laboratory of High Performance Complex Manufacturing (Central South University),China+1 种基金Projects(2020JJ4247, 2022JJ30743) supported by the Natural Foundation of Hunan Province,ChinaProject(1053320190337) supported by the Fundamental Research Funds for the Central University,China。
文摘Electron beam lithography(EBL) is a key technology in the fabrication of nanoscale silicon optical waveguide. The influence of exposure dose, the main process parameter of EBL, on the structure profile of poly-methyl methacrylate(PMMA) after development was studied using a silicon on insulator(SOI) wafer with 220 nm top silicon as the substrate. The relationship between exposure dose and structure pattern width after development was analyzed according to the measurement results. The optimum exposure dose of 220 μC/cm^(2) was found to obtain a final structure consistent with the designed mask value through subsequent processes. At the same time, according to the image segmentation curve tracking technology, the contour extraction process of the dose test results was carried out, and the relationship among mask design value, exposure dose and two-dimensional roughness of boundary contour was analyzed, which can provide reference for the subsequent electron beam lithography of the same substrate material.
基金Supported by the Key Grant Project of the Ministry of Education of China under Grant No 313007
文摘We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slot size are studied in detail. The results show that the optical field in the slot region with metallic gratings is significantly enhanced compared with the traditional slot waveguide due to the surface plasmon polaritons coupling on metallic gratings. The extraordinary optical confinement is attributed to the low effective dielectric constant of metallic gratings. The effective dielectric constant decreases with the increasing wavelength, and reaches the minimum when the width of the metal gap is about 0.01 times the wavelength.
基金support from the Innovation Program for Quantum Science and Technology(No.2021ZD0303401)Fundamental Research Funds for the Central Universities,National Natural Science Foundation of China(Grant Nos.62271245,62227820,62271242,62071214,62004093,12033002,62035014,62288101,and 11227904)+2 种基金National Key R&D Program of China(Grant No.2018YFB1801504)Excellent Youth Natural Science Foundation of Jiangsu Province(Grant No.BK20200060)Priority Academic Program Development of Jiangsu Higher Education Institutions,Key Lab of Optoelectronic Devices and Systems with Extreme Performance,and Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves.
文摘Microring resonators have been widely used in passive optical devices such as wavelength division multiplexers,differentiators,and integrators.Research on terahertz(THz)components has been accelerated by these photonics technologies.Compact and integrated time-domain differentiators that enable low-loss,high-speed THz signal processing are necessary for THz applications.In this study,an on-chip THz temporal differentiator based on all-silicon photonic technology was developed.This device primarily consisted of a microring waveguide resonator and was packaged with standard waveguide compatibility.It performed time-domain differentiation on input signals at a frequency of 405.45 GHz with an insertion loss of 2.5 dB and a working bandwidth of 0.36 GHz.Various periodic waveforms could be handled by this differentiator.This device could work as an edge detector,which detected step-like edges in high-speed input signals through differential effects.This development holds significant promise for future THz data processing technologies and THz communication systems.
基金financial supports from the National Key Research and Development Program of China(2018YFB2200403)National Natural Sci-ence Foundation of China(NSFC)(61775003,11734001,91950204,11527901,11604378,91850117).
文摘The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing.
基金Engineering and Physical Sciences Research Council(EPSRC)H2020 European Research Council(ERC)project iPLASMM(321268)+2 种基金Royal SocietyWolfson FoundationEuropean Commission(EC)FP7 project(304179)(Marie Curie Actions)
文摘Strong nonlinearity of plasmonic metamaterials can be designed near their effective plasma frequency in the epsilon-near-zero(ENZ) regime. We explore the realization of an all-optical modulator based on the Au nonlinearity using an ENZ cavity formed by a few Au nanorods inside a Si photonic waveguide. The resulting modulator has robust performance with a modulation depth of about 30 dB/μm and loss less than 0.8 dB for switching energies below 600 fJ. The modulator provides a double advantage of high mode transmission and strong nonlinearity enhancement in the few-nanorod-based design.
文摘We investigate in this paper the influence of slow light on the balance between the Kerr and two-photon absorption(TPA) processes in silicon slotted hybrid nonlinear waveguides. Three typical silicon photonic waveguide geometries are studied to estimate the influence of the light slow-down factor on the mode field overlap with the silicon region, as well as on the complex effective nonlinear susceptibility. It is found that slotted photonic crystal modes tend to focalize in their hollow core with increasing group index(n_G) values. Considering a hybrid integration of nonlinear polymers in such slotted waveguides, a relative decrease of the TPA process by more factor of 2 is predicted from n_G=10 to n_G=50. As a whole, this work shows that the relative influence of TPA decreases for slotted waveguides operating in the slow light regime, making them a suitable platform for third-order nonlinear optics.
基金supported in part by the National Natural Science Foundation of China (No. 60977050)the National "973" Program of China (Nos. 2009CB320302 and 2011CB301704)
文摘Two types of 1×2 multi-mode interference (MMI) splitters with splitting ratios of 85:15 and 72:28 are designed. On the basis of a numerical simulation, an optimal length of the MMI section is obtained. Subsequently, the devices are fabricated and tested. The footprints of the rectangular MMI regions are only 3×18.2 and 3×14.3 (#m). The minimum excess losses are 1.4 and 1.1 dB. The results of the test on the splitting ratios are consistent with designed values. The devices can be applied in ultra-compact photonic integrated circuits to realize the "tap" function.
基金supported by the National Key Research and Development Program of China (No. 2017YFA0206403)Shanghai Municipal Science and Technology Major Project (No. 2017SHZDZX03)+3 种基金National Natural Science Foundation of China (No. 61475180)Science and Technology Commission of Shanghai Municipality (No. 16ZR1442600)Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB24020400)Shanghai Sailing Program (No. 18YF1428100)
文摘Here,we designed a broadband,low loss,compact,and fabrication-tolerant silicon-based four-mode edge coupler,composed of a 1×3 adiabatic mode-evolution counter-taper splitter and a triple-tip inverse taper.Based on mode conversion and power splitting,the proposed structure can simultaneously realize efficient mode coupling from TE_(0),TM_(0),TE_(1),and TM_(1) modes of multimode silicon waveguides to linearly polarized(LP),LP^(01,x),LP_(01,y),LP_(11a,x),and LP_(11a,y),modes in the few-mode fiber.To the best of our knowledge,we proposed the first scheme of four LP modes coupling,which is fully compatible with standard fabrication process.The 3D finite-difference time-domain simulation results show that the on-chip conversion losses of the four modes remain lower than 0.62 dB over the 200 nm wavelength range,and total coupling losses are 4.1 dB,5.1 dB,2.1 dB,and 2.9 dB for TE_(0)-to-LP_(01,x),TM_(0)-to-LP_(01,y),TE_(1)-to-LP_(11a,x),and TM_(1)-to-LP_(11a,y),respectively.Good fabrication tolerance and relaxed critical dimensions make the four-mode edge coupler compatible with standard fabrication process of commercial silicon photonic foundries.
基金Ministry of Science and Technology of the People's Republic of China(MOST)(2016YFA0301300)National Natural Science Foundation of China(NSFC)(61275201,61372037)+2 种基金Beijing University of Posts and Telecommunications(BUPT)Excellent Ph.D.Students Foundation(CX2016204)Fundamental Research Funds for the Central Universities(2016RC24)Beijing Excellent Ph.D.Thesis Guidance Foundation(20131001301)
文摘A novel scheme for the design of an ultra-compact and high-performance optical switch is proposed and investigated numerically. Based on a standard silicon(Si) photonic stripe waveguide, a section of hyperbolic metamaterials(HMM) consisting of 20-pair alternating vanadium dioxide (VO_2)∕Si thin layers is inserted to realize the switching of fundamental TE mode propagation. Finite-element-method simulation results show that, with the help of an HMM with a size of 400 nm × 220 nm × 200 nm(width × height × length), the ON/OFF switching for fundamental TE mode propagation in an Si waveguide can be characterized by modulation depth(MD) of5.6 d B and insertion loss(IL) of 1.25 dB. It also allows for a relatively wide operating bandwidth of 215 nm maintaining MD > 5 dB and IL < 1.25 dB. Furthermore, we discuss that the tungsten-doped VO_2 layers could be useful for reducing metal-insulator-transition temperature and thus improving switching performance. In general, our findings may provide some useful ideas for optical switch design and application in an on-chip all-optical communication system with a demanding integration level.
基金National Natural Science Foundation of China(NSFC)(61475138,61675177)Specialized Research Fund for the Doctoral Program of Higher Education of China(20130101110089)Natural Science Foundation of Zhejiang Province(LY14F050006)
文摘All-optical two-channel format conversion is proposed and experimentally demonstrated from a 40 Gbit/s polarization multiplexing(Pol-MUX) non-return-to-zero quadrature phase-shift keying(QPSK) signal to Pol-MUX binary phase-shift keying(BPSK) signals by using phase-doubled four-wave mixing effects with two polarization-angled pumps in a silicon waveguide. The eye diagrams and constellation diagrams of the original QPSK sequences and the converted BPSK sequences of each channel are clearly observed on the two polarization states. Moreover,the bit error rates(BERs) of the two converted idlers are measured. The power penalties of all these converted BPSK sequences on both X and Y polarization states are less than 3.4 dB at a BER of 3.8 × 10^(-3).
文摘A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16-quadrature amplitude modulation(QAM) signals at 16 GBd is demonstrated with an optical signal-to-noise ratio penalty below 0.7 dB. High-quality converted signals are generated thanks to the low polarization dependence(≤0.5 dB) and the high conversion efficiency(CE) achievable. The strong Kerr nonlinearity in silicon and the decrease of detrimental free-carrier absorption due to the reverse-biased p-i-n diode are key in ensuring high CE levels.
文摘Changes in refractive index and the corresponding changes in the characteristics of an optical waveguide in enabling propagation of light are the basis for many modern silicon photonic devices. Optical properties of these active nanoscale waveguides are sensitive to the little changes in geometry, external injection/biasing, and doping profiles, and can be crucial in design and manufacturing processes. This paper brings the active silicon waveguide for complete characterization of various distinctive guiding parameters, including perturbation in real and imaginary refractive index, mode loss, group velocity dispersion, and bending loss, which can be instrumental in developing optimal design specifications for various application-centric active silicon waveguides.