Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were inve...Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were investigated. The structure and properties of the composites were determined by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that samples have silicon/flake graphite/amorphous carbon composite structure, good spherical appearances, and better electrochemical performance than pure nano-Si and FG/C composites. Compared with the Si/FG/C composite using washing powder as dispersant, the Si/FG/C composite using sodium dodecyl benzene sulfonate (SDBS) as dispersant has better electrochemical performance with a reversible capacity of 602.68 mA·h/g, and a capacity retention ratio of 91.58 % after 20 cycles.展开更多
In spite of silicon has a superior theoretical capacity, the large volume expansion of Si anodes during Li^+ insertion/extraction is the bottle neck that results in fast capacity fading and poor cycling performance. I...In spite of silicon has a superior theoretical capacity, the large volume expansion of Si anodes during Li^+ insertion/extraction is the bottle neck that results in fast capacity fading and poor cycling performance. In this paper, we report a silicon, single-walled carbon nanotube, and ordered mesoporous carbon nanocomposite synthesized by an evaporation-induced self-assembly process, in which silicon nanoparticles and single-walled carbon nanotubes were added into the phenolic resol with F-127 for co-condensation. The ordered mesoporous carbon matrix and single-walled carbon nanotubes network could effectively accommodate the volume change of silicon nanoparticles, and the ordered mesoporous structure could also provide efficient channels for the fast transport of Li-ions. As a consequence, this hybrid material exhibits a reversible capacity of 861 mAh g^(-1) after 150 cycles at a current density of 400 mAg^(-1). It achieves significant improvement in the electrochemical performance when compared with the raw materials and Si nanoparticle anodes.展开更多
Silicon (Si) has been considered as one of the most promising anode material for tHe next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availabi...Silicon (Si) has been considered as one of the most promising anode material for tHe next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availability and environmental friendliness. However. silicon materials with low intrinsic electric and ionic conductivity suffer from huge volume variation during lithiation/delithiation processes leading to the pulverization of Si and subsequently resulting in severe capacity fading of the electrodes. Coupling of Si with carbon (C) realizes a favorable combination of the two materials properties, such as high lithiation capacity of Si and excellent mechanical and conductive properties of C. making silicon/carbon composite (Si/C) ideal candidates for LIBs anodes. In this review, recent progresses of Si/C materials utilized in LIBs are summarized in terms of structural design principles, material synthesis methods, morphological characteristics and electrochemical performances by highlighting the material structures. The mechanisms behind the performance enhancement are also discussed. Moreover, other factors that affect the performance of Si/C anodes, such as prelithiation, electrolyte additives, and binders, are also discussed. We aim to present a full scope of the Si/C-based anodes, and help understand and design future structures of Si/C anodes in LIBs,展开更多
Si-based materials have been extensively studied because of their high theoretical capacity,low working potential,and abundant reserves,but serious initial irreversible capacity loss and poor cyclic performance result...Si-based materials have been extensively studied because of their high theoretical capacity,low working potential,and abundant reserves,but serious initial irreversible capacity loss and poor cyclic performance resulting from large volume change of Si during lithiation and delithiation processes restrict their widespread application.Herein,we report the preparation of multi-shell coated Si(DS-Si)nanocomposites by in-situ electroless deposition method using Si granules as the active materials and copper sulfate as Cu sources.The ratio of Si and Cu was readily tuned by varying the concentration of copper sulfate.The multi-shell(Cu@CuxSi/SiO2)coating on Si surface promotes the formation of robust and dense SEI films and the transportation of electron.Thus,the obtained DS-Si composites exhibit an initial coulombic efficiency of 86.2%,a capacity of 1636 mAh g^-1 after 100 discharge-charge cycles at 840 mA g^-1,and an average charge capacity of 1493 mAh g^-1 at 4200 mA g^-1.This study provides a low-cost and large-scale approach to the preparation of nanostructured Si-metal composites anodes with good electrochemical performance for lithium ion batteries.展开更多
Silicon has been investigated extensively as a promising anode material for rechargeable lithium-ion bat- teries. Understanding the failure mechanism of silicon-based anode electrodes for lithium-ion batteries is esse...Silicon has been investigated extensively as a promising anode material for rechargeable lithium-ion bat- teries. Understanding the failure mechanism of silicon-based anode electrodes for lithium-ion batteries is essential to solve the problem of low coulombic efficiency and capacity fading on cycling and also to further commercialize this very new energetic material in cells. To reach this goal, the structure changes of bulk silicon particles and electrode after cycling were studied using ex-situ scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM images indicated that the microstructural changes of the bulk silicon particles during cycling led to a layer rupture of the electrode and then the breakdown of the conductive network and the failure of the electrode. The result contributes to the basic understanding of the failure mechanism of a bulk sil- icon anode electrode for lithium-ion batteries.展开更多
In this paper, two types of silicon(Si) particles ball-milled from n-type Si wafers, respectively, with resistivity values of 1 Ω·cm and 0.001 Ω·cm are deposited with silver(Ag). The Ag-deposited n-typ...In this paper, two types of silicon(Si) particles ball-milled from n-type Si wafers, respectively, with resistivity values of 1 Ω·cm and 0.001 Ω·cm are deposited with silver(Ag). The Ag-deposited n-type 1-Ω·cm Si particles(nl-Ag) and Ag-deposited n-type 0.001-Ω·cm Si particles(n0.001-Ag) are separately used as an anode material to assemble coin cells,of which the electrochemical performances are investigated. For the matching of work function between n-type 1-Ω·cm Si(nl) and Ag, nl-Ag shows discharge specific capacity of up to 683 mAh·g^-1 at a current density of 8.4 A·g^-1, which is40% higher than that of n0.001-Ag. Furthermore, the resistivity of nl-Ag is lower than half that of n0.001-Ag. Due to the mismatch of work function between n-type 0.001-Ω·cm Si(n0.001) and Ag, the discharge specific capacity of n0.001-Ag is 250.2 mAh·g^-1 lower than that of nl-Ag after 100 cycles.展开更多
Ternary and quadruple lithium silicon nitride anode materials for lithium ion batteries with different precursors were prepared by the simple process of high-energy ball milling. High capacity and excellent cyclabilit...Ternary and quadruple lithium silicon nitride anode materials for lithium ion batteries with different precursors were prepared by the simple process of high-energy ball milling. High capacity and excellent cyclability were obtained. The influence of precursor introduction on the electrochemical performance of products was investigated. This research reveals that the electrochemical performance of lithium silicon hitilde can be enhanced significantly by doping O. The cyclability of quadruple lithium silicon nitfide can be optimized remarkably by controlling the introduction quantity of the precursors. It is possible for the composite to be used as a capacity compensator within a wide voltage cut-off window.展开更多
Silicon (Si) is regarded as a promising material for lithium-ion battery anode because of high theoretical capacity. Nevertheless, Si faces particle pulverization and rapid capacity fading due to serious volume change...Silicon (Si) is regarded as a promising material for lithium-ion battery anode because of high theoretical capacity. Nevertheless, Si faces particle pulverization and rapid capacity fading due to serious volume change during the lithiation and the delithiation process. In this work, a silicon/carbon composite constituted to Si powder and carbon nanofiber (CNF) is produced to solve the above issues as a new design structure of anode material. The Si powder was recycled from the silicon slicing waste in photovoltaic industry and the CNF was from dry rice straws. By mixing the purified Si powder with CNF, the composite was synthesized by the freeze-drying method and calcination. In the cyclic test, Si adding with 1 wt% CNF showed 3091 mAh/g capacity in the first cycle and 1079 mAh/g capacity after 100 cycles at the current density of 0.5 A/g, which were both better than pristine Si. SEM images also show the composite structure can eliminate cracks on the surface of the electrode during cycling. CNF attaching on Si particles can increase specific surface area, so binder can easily combine the active materials and the conductive materials together. This strategy enhances the structure stability and prevents the electrode from delamination.展开更多
Nickel/cobalt-layered double hydroxides(Ni Co-LDH) have been attracted increasing interest in the applications of anode materials for lithium ion battery(LIB), but the low cycle stability and rate performance are stil...Nickel/cobalt-layered double hydroxides(Ni Co-LDH) have been attracted increasing interest in the applications of anode materials for lithium ion battery(LIB), but the low cycle stability and rate performance are still limited its practice applications. To achieve high performance LIB, the surface-confined strategy has been applied to design and fabricate a new anode material of NiCo-LDH nanosheet anchored on the surface of Ti3C2 MXene(Ni Co-LDH/Ti3C2). The ultra-thin, bended and wrinkled α-phase crystal with an interlayer spacing of 8.1 ? can arrange on the conductive substrates Ti3C2 MXene directly, resulting in high electrolyte diffusion ability and low internal resistance. Furthermore, chemical bond interactions between the highly conductive Ti3C2 MXene and Ni Co-LDH nanosheets can greatly increase the ion and electron transport and reduce the volume expansion of NiCo-LDH during Li ion intercalation. As expected,the discharge capacity of 562 m Ah g-1 at 5.0 A g-1 for 800 cycles without degradation can be achieved,rate capability and cycle performance are better than that of NiCo-LDH(~100 mAh g-1). Furthermore, the density function theory(DFT) calculations were performed to demonstrate that Ni Co-LDH/Ti3C2 system can be used as a highly desirable and promising anode material for lithium ion battery.展开更多
The bare LiFePO4 and LiFePO4/C composites with network structure were prepared by solid-state reaction. The crystalline structures, morphologies and specific surface areas of the materials were investigated by X-ray d...The bare LiFePO4 and LiFePO4/C composites with network structure were prepared by solid-state reaction. The crystalline structures, morphologies and specific surface areas of the materials were investigated by X-ray diffractometry(XRD), scanning electron microscopy(SEM) and multi-point brunauer emmett and teller(BET) method. The results show that the LiFePO4/C composite with the best network structure is obtained by adding 10% phenolic resin carbon. Its electronic conductivity increases to 2.86×10-2 S/cm. It possesses the highest specific surface area of 115.65 m2/g, which exhibits the highest discharge specific capacity of 164.33 mA·h/g at C/10 rate and 149.12 mA·h/g at 1 C rate. The discharge capacity is completely recovered when C/10 rate is applied again.展开更多
In this work, we report a facile route for the synthesis of Li3V2(PO4)3/C cathode material via freezedrying and then calcination. The effect of calcination temperature on the electrochemical properties of the Li3V2(PO...In this work, we report a facile route for the synthesis of Li3V2(PO4)3/C cathode material via freezedrying and then calcination. The effect of calcination temperature on the electrochemical properties of the Li3V2(PO4)3/C is also investigated. When used as a lithium-ion battery cathode, the optimized Li3V2(PO4)3/C (LVP-800) through calcination at 800 ℃ exhibits a high initial charge and discharge capacity. The excellent electrochemical performance of LVP-800 is attributed to the good crystallinity and uniform morphology of the electrode material. In addition, the residual carbon can also improve the conductivity and buffer the volume expansion during the Li-ion extraction/reinsertion. Meanwhile, charge compensation also plays an important role in excellent electrochemical performance.展开更多
The thermal stability of lithium-ion battery electrolyte could substantially affect the safety of lithium-ion battery. In order to disclose the thermal stability of 1.0 mol·L-1 LiPF6/ethylene carbonate (EC)+dimet...The thermal stability of lithium-ion battery electrolyte could substantially affect the safety of lithium-ion battery. In order to disclose the thermal stability of 1.0 mol·L-1 LiPF6/ethylene carbonate (EC)+dimethyl carbonate (DMC)+ethylmethyl carbonate (EMC) electrolyte, a micro calorimeter C80 micro calorimeter was used in this paper. The electrolyte samples were heated in argon atmosphere, and the heat flow and pressure performances were detected. It is found that LiPF6 influences the thermal behavior remarkably, with more heat generation and lower onset temperature. LiPF6/EC shows an exothermic peak at 212 ℃ with a heat of reaction -355.4 J·g-1. DMC based LiPF6 solution shows two endothermic peak temperatures at 68.5 and 187 ℃ in argon filled vessel at elevated temperature. EMC based LiPF6 solution shows two endothermic peak temperatures at 191 and 258 ℃ in argon filled vessel. 1.0 mol·L-1 LiPF6/EC+DMC+ EMC electrolyte shows an endothermic and exothermic process one after the other at elevated temperature. By comparing with the thermal behavior of single solvent based LiPF6 solution, it can be speculated that LiPF6 may react with EC, DMC and EMC separately in 1.0 mol·L-1 LiPF6/EC+DMC+EMC electrolyte, but the exothermic peak is lower than that of 1.0 mol·L-1 LiPF6/EC solution. Furthermore, The 1.0 mol·L-1 LiPF6/EC+DMC+EMC electrolyte decomposition reaction order was calculated based on the pressure data, its value is n=1.83, and the pressure rate constants kp=6.49×10-2 kPa·-0.83·min-1.展开更多
In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2F...In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2FeSi04 was synthesized by a facile hydrothermal method with(NH4)2Fe(SO4)2 as the iron source.The spindle-like Li2FeSiO4 was sintered at 600 ℃ for 6 h in Ar atmosphere.Li2FeSiO4-C composite was obtained by the hydrothermal treatment of spindle-like Li2FeSiO4 in glucose solution at 190 ℃ for 3 h.Electrochemical measurements show that after carbon coating,the electrode performances such as discharge capacity and high-rate capability are greatly enhanced.In particular.Li2FeSiO4-C with carbon content of 7.21 wt%delivers the discharge capacities of 160.9 mAh·g-1 at room temperature and 213 mAh·g-1 at45℃(0.1 C),revealing the potential application in lithium-ion batteries.展开更多
In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficientl...In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%.展开更多
Si/Cu3Si@C composites encapsulated in CNTs network(SCC-CNTs) were synthesized via the combination of ball-milling and CVD methods. SCC-CNTs consist of conductive Cu3Si, amorphous carbon layer, cross-linked CNTs, and t...Si/Cu3Si@C composites encapsulated in CNTs network(SCC-CNTs) were synthesized via the combination of ball-milling and CVD methods. SCC-CNTs consist of conductive Cu3Si, amorphous carbon layer, cross-linked CNTs, and the etched pores, which can play the synergistic effects on the improvement of electronic conductivity and Li^+ diffusion. The volume expansion of Si anode is also suppressed during the electrochemical process. The SCC-CNTs composites demonstrate a remarkably improved electrochemical performance compared with pure Si, which can deliver a discharge capacity of 2 171 mAh·g^-1 at 0.4 A·g^-1 with ICE of 85.2%, and retain 1197 mAh· g^-1 after 150 cycles. This work provides a facile approach to massively produce the high-performance Si-based anode materials for next-generation LIBs.展开更多
Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)s...Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)spheres,used as anode material for lithium ion batteries,were successfully fabricated by Stober method.XRD patterns reveal that Fe3O4@TiO2@C Y-S spheres possess a good crystallinity.But the diffraction peaks’intensity of Fe3O4 crystals in the composites is much weaker than that of bare Fe3O4 spheres,indicating that the outer anatase TiO2@C layer can cover up the diffraction peaks of inner Fe3O4 spheres.The yolk-shell structure of Fe3O4@TiO2@C spheres is further characterized by TEM,HAADFSTEM,and EDS mapping.The yolk-shell structure is good for improving the cycling stability of the inner Fe3O4 spheres during lithium ions insertion-extraction processes.When tested at 200 mA/g,the Fe3O4@TiO2@C Y-S spheres can provide a stable discharge capacity of 450 mAh/g over 100 cycles,which is much better than that of bare Fe3O4 spheres and TiO2@C spheres.Furthermore,cyclic voltammetry curves show that the composites have a good cycling stability compared to bare Fe3O4 spheres.展开更多
Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy land- scape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials cri...Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy land- scape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research.展开更多
A stable silicon dioxide film was coated on the surface of natural graphite anode by sol-gel method with Si(OCH2CH3)4, and effects of modification on performance of natural graphite were investigated. The structure an...A stable silicon dioxide film was coated on the surface of natural graphite anode by sol-gel method with Si(OCH2CH3)4, and effects of modification on performance of natural graphite were investigated. The structure and properties of graphite samples were determined by X-ray diffractometry(XRD), scanning electron microscopy(SEM), energy-dispersive X-ray spectroscopy(EDS) and electrochemical measurements. The modified graphite shows mainly the layer structure, and silicon dioxide film is amorphous. Compared with the pure natural graphite, the modified graphite exhibits the higher specific capacity of 366 mA·h/g. After 40 charge-discharge cycles, the capacity retention ratio of the modified graphite reaches 99.55%, while that of natural graphite is only 83.04%. The results indicate that the surface modification of natural graphite by SiO2 is effective for improving the electrochemical performance of the natural graphite anode for lithium ion batteries.展开更多
The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized suc...The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized successfully by combination of wet process and solid-state reaction at high temperature, and its electrochemical performance was investigated primarily. Li2Mg0.15Mn0.4Co0.45SiO4/C composite materials deliver a charge capacity of 302 mA-h/g and a discharge capacity of 171 mA.h/g in the first cycle. The discharge capacity is stabilized at about 100 mA-h/g after 10 cycles at a current density of 10 mA/g in the voltage of 1.5-4.8 V vs Li/Li^+. The results show that Mg-substitution for the Co ions in Li2Mn0.4Co0.6SiO4 improves the stabilization of initial structure and the electrochemical nerformance.展开更多
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
基金Project(2011FJ1005)supported by the Science and Technology Programs of Hunan Province,China
文摘Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were investigated. The structure and properties of the composites were determined by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that samples have silicon/flake graphite/amorphous carbon composite structure, good spherical appearances, and better electrochemical performance than pure nano-Si and FG/C composites. Compared with the Si/FG/C composite using washing powder as dispersant, the Si/FG/C composite using sodium dodecyl benzene sulfonate (SDBS) as dispersant has better electrochemical performance with a reversible capacity of 602.68 mA·h/g, and a capacity retention ratio of 91.58 % after 20 cycles.
基金supported by the National Natural Science Foundation of China(NO.91434203,21276257,91534109)"Strategic Priority Research Program" of the Chinese Academy of Sciences(Grant No.XDA09010103)External Cooperation Program of BIC of the Chinese Academy of Sciences(Grant No.GJHZ201306)
文摘In spite of silicon has a superior theoretical capacity, the large volume expansion of Si anodes during Li^+ insertion/extraction is the bottle neck that results in fast capacity fading and poor cycling performance. In this paper, we report a silicon, single-walled carbon nanotube, and ordered mesoporous carbon nanocomposite synthesized by an evaporation-induced self-assembly process, in which silicon nanoparticles and single-walled carbon nanotubes were added into the phenolic resol with F-127 for co-condensation. The ordered mesoporous carbon matrix and single-walled carbon nanotubes network could effectively accommodate the volume change of silicon nanoparticles, and the ordered mesoporous structure could also provide efficient channels for the fast transport of Li-ions. As a consequence, this hybrid material exhibits a reversible capacity of 861 mAh g^(-1) after 150 cycles at a current density of 400 mAg^(-1). It achieves significant improvement in the electrochemical performance when compared with the raw materials and Si nanoparticle anodes.
文摘Silicon (Si) has been considered as one of the most promising anode material for tHe next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availability and environmental friendliness. However. silicon materials with low intrinsic electric and ionic conductivity suffer from huge volume variation during lithiation/delithiation processes leading to the pulverization of Si and subsequently resulting in severe capacity fading of the electrodes. Coupling of Si with carbon (C) realizes a favorable combination of the two materials properties, such as high lithiation capacity of Si and excellent mechanical and conductive properties of C. making silicon/carbon composite (Si/C) ideal candidates for LIBs anodes. In this review, recent progresses of Si/C materials utilized in LIBs are summarized in terms of structural design principles, material synthesis methods, morphological characteristics and electrochemical performances by highlighting the material structures. The mechanisms behind the performance enhancement are also discussed. Moreover, other factors that affect the performance of Si/C anodes, such as prelithiation, electrolyte additives, and binders, are also discussed. We aim to present a full scope of the Si/C-based anodes, and help understand and design future structures of Si/C anodes in LIBs,
基金supported by the China Postdoctoral Science Foundation(2018M632575)the National Natural Science Foundation of China(21875197 and 21621091)the National Key Research and Development of China(2016YFB0100202)。
文摘Si-based materials have been extensively studied because of their high theoretical capacity,low working potential,and abundant reserves,but serious initial irreversible capacity loss and poor cyclic performance resulting from large volume change of Si during lithiation and delithiation processes restrict their widespread application.Herein,we report the preparation of multi-shell coated Si(DS-Si)nanocomposites by in-situ electroless deposition method using Si granules as the active materials and copper sulfate as Cu sources.The ratio of Si and Cu was readily tuned by varying the concentration of copper sulfate.The multi-shell(Cu@CuxSi/SiO2)coating on Si surface promotes the formation of robust and dense SEI films and the transportation of electron.Thus,the obtained DS-Si composites exhibit an initial coulombic efficiency of 86.2%,a capacity of 1636 mAh g^-1 after 100 discharge-charge cycles at 840 mA g^-1,and an average charge capacity of 1493 mAh g^-1 at 4200 mA g^-1.This study provides a low-cost and large-scale approach to the preparation of nanostructured Si-metal composites anodes with good electrochemical performance for lithium ion batteries.
基金financially supported by the National Natural Science Foundation of China (Nos. 51004016 and 51004017)the National High Technology Research and Development Program of China (Nos.2012AA110102 and 2011AA11A269)
文摘Silicon has been investigated extensively as a promising anode material for rechargeable lithium-ion bat- teries. Understanding the failure mechanism of silicon-based anode electrodes for lithium-ion batteries is essential to solve the problem of low coulombic efficiency and capacity fading on cycling and also to further commercialize this very new energetic material in cells. To reach this goal, the structure changes of bulk silicon particles and electrode after cycling were studied using ex-situ scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM images indicated that the microstructural changes of the bulk silicon particles during cycling led to a layer rupture of the electrode and then the breakdown of the conductive network and the failure of the electrode. The result contributes to the basic understanding of the failure mechanism of a bulk sil- icon anode electrode for lithium-ion batteries.
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2016M592115)the Jiangxi Postdoctoral Foundation,China(Grant No.2015KY12)+1 种基金the Fund from the Jiangxi Provincial Education Department,China(Grant No.150184)the Fund from Nanchang University,China(Grant No.CX2017006)
文摘In this paper, two types of silicon(Si) particles ball-milled from n-type Si wafers, respectively, with resistivity values of 1 Ω·cm and 0.001 Ω·cm are deposited with silver(Ag). The Ag-deposited n-type 1-Ω·cm Si particles(nl-Ag) and Ag-deposited n-type 0.001-Ω·cm Si particles(n0.001-Ag) are separately used as an anode material to assemble coin cells,of which the electrochemical performances are investigated. For the matching of work function between n-type 1-Ω·cm Si(nl) and Ag, nl-Ag shows discharge specific capacity of up to 683 mAh·g^-1 at a current density of 8.4 A·g^-1, which is40% higher than that of n0.001-Ag. Furthermore, the resistivity of nl-Ag is lower than half that of n0.001-Ag. Due to the mismatch of work function between n-type 0.001-Ω·cm Si(n0.001) and Ag, the discharge specific capacity of n0.001-Ag is 250.2 mAh·g^-1 lower than that of nl-Ag after 100 cycles.
基金This study is f'mancially supported by the National Natural Science Foundation of China (No.50502009)the Natural Science Foundation of Liaoning Province of China (No.20072146).
文摘Ternary and quadruple lithium silicon nitride anode materials for lithium ion batteries with different precursors were prepared by the simple process of high-energy ball milling. High capacity and excellent cyclability were obtained. The influence of precursor introduction on the electrochemical performance of products was investigated. This research reveals that the electrochemical performance of lithium silicon hitilde can be enhanced significantly by doping O. The cyclability of quadruple lithium silicon nitfide can be optimized remarkably by controlling the introduction quantity of the precursors. It is possible for the composite to be used as a capacity compensator within a wide voltage cut-off window.
文摘Silicon (Si) is regarded as a promising material for lithium-ion battery anode because of high theoretical capacity. Nevertheless, Si faces particle pulverization and rapid capacity fading due to serious volume change during the lithiation and the delithiation process. In this work, a silicon/carbon composite constituted to Si powder and carbon nanofiber (CNF) is produced to solve the above issues as a new design structure of anode material. The Si powder was recycled from the silicon slicing waste in photovoltaic industry and the CNF was from dry rice straws. By mixing the purified Si powder with CNF, the composite was synthesized by the freeze-drying method and calcination. In the cyclic test, Si adding with 1 wt% CNF showed 3091 mAh/g capacity in the first cycle and 1079 mAh/g capacity after 100 cycles at the current density of 0.5 A/g, which were both better than pristine Si. SEM images also show the composite structure can eliminate cracks on the surface of the electrode during cycling. CNF attaching on Si particles can increase specific surface area, so binder can easily combine the active materials and the conductive materials together. This strategy enhances the structure stability and prevents the electrode from delamination.
基金Rachadapisek Sompoch project,Chulalongkorn University(CU_GR_62_14_62_02)the Energy Conservation and Promotion Fund Office,Ministry of Energy+2 种基金the NSFC(grant 51421091)National Science Foundation for Distinguished Young Scholars for Hebei Province of China(grant E2016203376)Asahi Glass Foundation。
文摘Nickel/cobalt-layered double hydroxides(Ni Co-LDH) have been attracted increasing interest in the applications of anode materials for lithium ion battery(LIB), but the low cycle stability and rate performance are still limited its practice applications. To achieve high performance LIB, the surface-confined strategy has been applied to design and fabricate a new anode material of NiCo-LDH nanosheet anchored on the surface of Ti3C2 MXene(Ni Co-LDH/Ti3C2). The ultra-thin, bended and wrinkled α-phase crystal with an interlayer spacing of 8.1 ? can arrange on the conductive substrates Ti3C2 MXene directly, resulting in high electrolyte diffusion ability and low internal resistance. Furthermore, chemical bond interactions between the highly conductive Ti3C2 MXene and Ni Co-LDH nanosheets can greatly increase the ion and electron transport and reduce the volume expansion of NiCo-LDH during Li ion intercalation. As expected,the discharge capacity of 562 m Ah g-1 at 5.0 A g-1 for 800 cycles without degradation can be achieved,rate capability and cycle performance are better than that of NiCo-LDH(~100 mAh g-1). Furthermore, the density function theory(DFT) calculations were performed to demonstrate that Ni Co-LDH/Ti3C2 system can be used as a highly desirable and promising anode material for lithium ion battery.
基金Project(50672024) supported by the National Natural Science Foundation of ChinaProject(06FJ2006) supported by the Applied Basic Research of Hunan Province, China
文摘The bare LiFePO4 and LiFePO4/C composites with network structure were prepared by solid-state reaction. The crystalline structures, morphologies and specific surface areas of the materials were investigated by X-ray diffractometry(XRD), scanning electron microscopy(SEM) and multi-point brunauer emmett and teller(BET) method. The results show that the LiFePO4/C composite with the best network structure is obtained by adding 10% phenolic resin carbon. Its electronic conductivity increases to 2.86×10-2 S/cm. It possesses the highest specific surface area of 115.65 m2/g, which exhibits the highest discharge specific capacity of 164.33 mA·h/g at C/10 rate and 149.12 mA·h/g at 1 C rate. The discharge capacity is completely recovered when C/10 rate is applied again.
基金supported by the National Key R&D Program of China(No.2016YFB0100500)
文摘In this work, we report a facile route for the synthesis of Li3V2(PO4)3/C cathode material via freezedrying and then calcination. The effect of calcination temperature on the electrochemical properties of the Li3V2(PO4)3/C is also investigated. When used as a lithium-ion battery cathode, the optimized Li3V2(PO4)3/C (LVP-800) through calcination at 800 ℃ exhibits a high initial charge and discharge capacity. The excellent electrochemical performance of LVP-800 is attributed to the good crystallinity and uniform morphology of the electrode material. In addition, the residual carbon can also improve the conductivity and buffer the volume expansion during the Li-ion extraction/reinsertion. Meanwhile, charge compensation also plays an important role in excellent electrochemical performance.
基金This study was financially supported by "100 Talents Project" of Chinese Academy of Sciences, Nature Science Funds of Anhui Province (No.050450403) Youth Funds of USTC are also appreciated.
文摘The thermal stability of lithium-ion battery electrolyte could substantially affect the safety of lithium-ion battery. In order to disclose the thermal stability of 1.0 mol·L-1 LiPF6/ethylene carbonate (EC)+dimethyl carbonate (DMC)+ethylmethyl carbonate (EMC) electrolyte, a micro calorimeter C80 micro calorimeter was used in this paper. The electrolyte samples were heated in argon atmosphere, and the heat flow and pressure performances were detected. It is found that LiPF6 influences the thermal behavior remarkably, with more heat generation and lower onset temperature. LiPF6/EC shows an exothermic peak at 212 ℃ with a heat of reaction -355.4 J·g-1. DMC based LiPF6 solution shows two endothermic peak temperatures at 68.5 and 187 ℃ in argon filled vessel at elevated temperature. EMC based LiPF6 solution shows two endothermic peak temperatures at 191 and 258 ℃ in argon filled vessel. 1.0 mol·L-1 LiPF6/EC+DMC+ EMC electrolyte shows an endothermic and exothermic process one after the other at elevated temperature. By comparing with the thermal behavior of single solvent based LiPF6 solution, it can be speculated that LiPF6 may react with EC, DMC and EMC separately in 1.0 mol·L-1 LiPF6/EC+DMC+EMC electrolyte, but the exothermic peak is lower than that of 1.0 mol·L-1 LiPF6/EC solution. Furthermore, The 1.0 mol·L-1 LiPF6/EC+DMC+EMC electrolyte decomposition reaction order was calculated based on the pressure data, its value is n=1.83, and the pressure rate constants kp=6.49×10-2 kPa·-0.83·min-1.
基金supported by the Programs of National 973(2011CB935900)NSFC(21231005)+1 种基金MOE(B12015 and 113016A)the Fundamental Research Funds for the Central Universities
文摘In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2FeSi04 was synthesized by a facile hydrothermal method with(NH4)2Fe(SO4)2 as the iron source.The spindle-like Li2FeSiO4 was sintered at 600 ℃ for 6 h in Ar atmosphere.Li2FeSiO4-C composite was obtained by the hydrothermal treatment of spindle-like Li2FeSiO4 in glucose solution at 190 ℃ for 3 h.Electrochemical measurements show that after carbon coating,the electrode performances such as discharge capacity and high-rate capability are greatly enhanced.In particular.Li2FeSiO4-C with carbon content of 7.21 wt%delivers the discharge capacities of 160.9 mAh·g-1 at room temperature and 213 mAh·g-1 at45℃(0.1 C),revealing the potential application in lithium-ion batteries.
基金supported by the State Key Basic Research Program of PRC(2011CB935903)the National Natural Science Foundation of China(No.20925312)Shanghai Science Technology Committee(13JC1407900)
文摘In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%.
基金Funded by the National Key R&D Program of China(No.2016YFB0100302)
文摘Si/Cu3Si@C composites encapsulated in CNTs network(SCC-CNTs) were synthesized via the combination of ball-milling and CVD methods. SCC-CNTs consist of conductive Cu3Si, amorphous carbon layer, cross-linked CNTs, and the etched pores, which can play the synergistic effects on the improvement of electronic conductivity and Li^+ diffusion. The volume expansion of Si anode is also suppressed during the electrochemical process. The SCC-CNTs composites demonstrate a remarkably improved electrochemical performance compared with pure Si, which can deliver a discharge capacity of 2 171 mAh·g^-1 at 0.4 A·g^-1 with ICE of 85.2%, and retain 1197 mAh· g^-1 after 150 cycles. This work provides a facile approach to massively produce the high-performance Si-based anode materials for next-generation LIBs.
基金supported by the Tianjin Committee of Science and Technology (No.14JCZDJC32400)Tianjin Science and Technology Innovation Platform Program (No.14TXGCCX00017)
文摘Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)spheres,used as anode material for lithium ion batteries,were successfully fabricated by Stober method.XRD patterns reveal that Fe3O4@TiO2@C Y-S spheres possess a good crystallinity.But the diffraction peaks’intensity of Fe3O4 crystals in the composites is much weaker than that of bare Fe3O4 spheres,indicating that the outer anatase TiO2@C layer can cover up the diffraction peaks of inner Fe3O4 spheres.The yolk-shell structure of Fe3O4@TiO2@C spheres is further characterized by TEM,HAADFSTEM,and EDS mapping.The yolk-shell structure is good for improving the cycling stability of the inner Fe3O4 spheres during lithium ions insertion-extraction processes.When tested at 200 mA/g,the Fe3O4@TiO2@C Y-S spheres can provide a stable discharge capacity of 450 mAh/g over 100 cycles,which is much better than that of bare Fe3O4 spheres and TiO2@C spheres.Furthermore,cyclic voltammetry curves show that the composites have a good cycling stability compared to bare Fe3O4 spheres.
基金support by the NSF(Grant Nos.CMMI 1100205 and DMR 1410936)
文摘Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy land- scape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research.
基金Project(2007CB613607) supported by the National Basic Research Program of China
文摘A stable silicon dioxide film was coated on the surface of natural graphite anode by sol-gel method with Si(OCH2CH3)4, and effects of modification on performance of natural graphite were investigated. The structure and properties of graphite samples were determined by X-ray diffractometry(XRD), scanning electron microscopy(SEM), energy-dispersive X-ray spectroscopy(EDS) and electrochemical measurements. The modified graphite shows mainly the layer structure, and silicon dioxide film is amorphous. Compared with the pure natural graphite, the modified graphite exhibits the higher specific capacity of 366 mA·h/g. After 40 charge-discharge cycles, the capacity retention ratio of the modified graphite reaches 99.55%, while that of natural graphite is only 83.04%. The results indicate that the surface modification of natural graphite by SiO2 is effective for improving the electrochemical performance of the natural graphite anode for lithium ion batteries.
基金Project(10B054)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2011GK2002,2011FJ3160)supported by the Planned Science and Technology Program of Hunan Province,China
文摘The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized successfully by combination of wet process and solid-state reaction at high temperature, and its electrochemical performance was investigated primarily. Li2Mg0.15Mn0.4Co0.45SiO4/C composite materials deliver a charge capacity of 302 mA-h/g and a discharge capacity of 171 mA.h/g in the first cycle. The discharge capacity is stabilized at about 100 mA-h/g after 10 cycles at a current density of 10 mA/g in the voltage of 1.5-4.8 V vs Li/Li^+. The results show that Mg-substitution for the Co ions in Li2Mn0.4Co0.6SiO4 improves the stabilization of initial structure and the electrochemical nerformance.