The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o...The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.展开更多
Systematic study on the electronic/geometrical structures and the parity alternation effect of silicon-doped ternary cationic clusters HCnSi2+(n = 1 ~9) have been carried out at the coupled cluster level. The groun...Systematic study on the electronic/geometrical structures and the parity alternation effect of silicon-doped ternary cationic clusters HCnSi2+(n = 1 ~9) have been carried out at the coupled cluster level. The ground-state (G-S) isomers of the clusters have been defined. The C, chains of the G-S isomers display polyacetylene-like structures. The even-n cations are more stable than the odd-n ones. Such a trend of even/odd alternation has been elaborated based on concepts of the bond character, atomic charge, incremental binding energy, ionization potential, proton affinity and fragmentation energies of the systems. The findings accord with the relative intensities of HC,,Si2+ species recorded in the related mass spectrometric experiments.展开更多
In this study,Si-doped ferrihydrite(Si-Fh) was successfully synthesized by a simple coprecipitation method for removal of heavy metals in water.Subsequently,the physicochemical properties of Si-Fh before and after ads...In this study,Si-doped ferrihydrite(Si-Fh) was successfully synthesized by a simple coprecipitation method for removal of heavy metals in water.Subsequently,the physicochemical properties of Si-Fh before and after adsorption were further studied using several techniques.The Si-Fh exhibited good adsorption capacity for heavy metal ions such as Pb(II) and Cd(II).The maximum adsorption capacities of lead and cadmium are respectively 105.807,37.986 mg/g.The distribution coefficients of the materials for Pb(II) and Cd(II) also showed a great affinity(under optimal conditions).Moreover,it was found that the adsorption fit well with the Freundlich isotherm and pseudo-second-order kinetic model which means this was a chemical adsorption process.It can be conducted from both characterization and model results that adsorption of Pb(II) and Cd(II) was mainly through the complexation interaction of abundance oxygen functional groups on the surface of Si-Fh.Overall,the Si-Fh adsorbents with many superiorities have potential for future applications in the removal of Pb(II) and Cd(II) from wastewater.展开更多
Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work re...Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work reports the morphology,impurity content and crystal quality characteristics of silicon-doped diamond crystals synthesized under different pressures.Fourier transform infrared spectroscopy shows that with the increase of pressure,the nitrogen content in the C-center inside the diamond crystal decreases.X-ray photoelectron spectroscopy test results show the presence of silicon in the diamond crystals synthesized by adding silicon powder.Raman spectroscopy data shows that the increase in pressure in the Fe-Ni-C-Si system shifts the Raman peak of diamonds from 1331.18 cm^(-1)to 1331.25 cm^(-1),resulting in a decrease in internal stress in the crystal.The half-peak width decreased from 5.41 cm^(-1)to 5.26 cm^(-1),and the crystallinity of the silicon-doped diamond crystals improved,resulting in improved quality.This work provides valuable data that can provide a reference for the synthesis of high-quality silicon-doped diamonds.展开更多
Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content o...Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.展开更多
基金Project (51005154) supported by the National Natural Science Foundation of ChinaProject (12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission, ChinaProject (201104271) supported by the China Postdoctoral Science Foundation
文摘The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(RFDP,20123514120003)Foundations of Fuzhou University(0041-600566 and 2012-XQ-12)
文摘Systematic study on the electronic/geometrical structures and the parity alternation effect of silicon-doped ternary cationic clusters HCnSi2+(n = 1 ~9) have been carried out at the coupled cluster level. The ground-state (G-S) isomers of the clusters have been defined. The C, chains of the G-S isomers display polyacetylene-like structures. The even-n cations are more stable than the odd-n ones. Such a trend of even/odd alternation has been elaborated based on concepts of the bond character, atomic charge, incremental binding energy, ionization potential, proton affinity and fragmentation energies of the systems. The findings accord with the relative intensities of HC,,Si2+ species recorded in the related mass spectrometric experiments.
基金supported by the National Natural Science Foundations of China (Nos.41771341 and 51978319)。
文摘In this study,Si-doped ferrihydrite(Si-Fh) was successfully synthesized by a simple coprecipitation method for removal of heavy metals in water.Subsequently,the physicochemical properties of Si-Fh before and after adsorption were further studied using several techniques.The Si-Fh exhibited good adsorption capacity for heavy metal ions such as Pb(II) and Cd(II).The maximum adsorption capacities of lead and cadmium are respectively 105.807,37.986 mg/g.The distribution coefficients of the materials for Pb(II) and Cd(II) also showed a great affinity(under optimal conditions).Moreover,it was found that the adsorption fit well with the Freundlich isotherm and pseudo-second-order kinetic model which means this was a chemical adsorption process.It can be conducted from both characterization and model results that adsorption of Pb(II) and Cd(II) was mainly through the complexation interaction of abundance oxygen functional groups on the surface of Si-Fh.Overall,the Si-Fh adsorbents with many superiorities have potential for future applications in the removal of Pb(II) and Cd(II) from wastewater.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.51872112 and 51772120)。
文摘Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work reports the morphology,impurity content and crystal quality characteristics of silicon-doped diamond crystals synthesized under different pressures.Fourier transform infrared spectroscopy shows that with the increase of pressure,the nitrogen content in the C-center inside the diamond crystal decreases.X-ray photoelectron spectroscopy test results show the presence of silicon in the diamond crystals synthesized by adding silicon powder.Raman spectroscopy data shows that the increase in pressure in the Fe-Ni-C-Si system shifts the Raman peak of diamonds from 1331.18 cm^(-1)to 1331.25 cm^(-1),resulting in a decrease in internal stress in the crystal.The half-peak width decreased from 5.41 cm^(-1)to 5.26 cm^(-1),and the crystallinity of the silicon-doped diamond crystals improved,resulting in improved quality.This work provides valuable data that can provide a reference for the synthesis of high-quality silicon-doped diamonds.
基金supported by the National Natural Science Foundation of China(Grant Nos.61076113 and 61274085)the Natural Science Foundation of Guangdong Province(Grant No.2016A030313474)the University Development Fund(Nanotechnology Research Institute,Grant No.00600009)of the University of Hong Kong,China
文摘Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.