In this paper, thermal effects and Drain Induced barrier lowering (DIBL) of silicon-on-insulator (SOI) and silicon-on-diamond (SOD) transistors with 22 nm channel lengths using hydrodynamic simulations have been inves...In this paper, thermal effects and Drain Induced barrier lowering (DIBL) of silicon-on-insulator (SOI) and silicon-on-diamond (SOD) transistors with 22 nm channel lengths using hydrodynamic simulations have been investigated. Thermal conductivity of diamond in contrast to thermal conductivity of silicon dioxide is significantly higher. Hence, the heat transfers faster in silicon-on-diamond transistors. Lattice temperature of SODs is lower than that of similar SOIs. By using SODs in Integrated circuits with the first transistor turning on and active, neighboring transistors will have the same level of heat as the active transistor. As a result, the DIBL factor will be increased;this is an undesired phenomenon in CMOS applications. To resolve this issue, we propose a new method which is the thickness reduction of buried diamond layers inside of transistors. Due to this change, DIBL of active transistor will be improved, the exceeding lattice heat of side transistors will be evacuated through the devices and their temperatures will be deduced in large scale.展开更多
文摘In this paper, thermal effects and Drain Induced barrier lowering (DIBL) of silicon-on-insulator (SOI) and silicon-on-diamond (SOD) transistors with 22 nm channel lengths using hydrodynamic simulations have been investigated. Thermal conductivity of diamond in contrast to thermal conductivity of silicon dioxide is significantly higher. Hence, the heat transfers faster in silicon-on-diamond transistors. Lattice temperature of SODs is lower than that of similar SOIs. By using SODs in Integrated circuits with the first transistor turning on and active, neighboring transistors will have the same level of heat as the active transistor. As a result, the DIBL factor will be increased;this is an undesired phenomenon in CMOS applications. To resolve this issue, we propose a new method which is the thickness reduction of buried diamond layers inside of transistors. Due to this change, DIBL of active transistor will be improved, the exceeding lattice heat of side transistors will be evacuated through the devices and their temperatures will be deduced in large scale.