AIM:To evaluate the safety and efficacy of Densiron 68 heavy silicone oil (HSO) tamponade for complicated retinal detachment(RD)in Chinese eyes.METHODS:Twenty-one eyes of 21 patients with complicated RD were included ...AIM:To evaluate the safety and efficacy of Densiron 68 heavy silicone oil (HSO) tamponade for complicated retinal detachment(RD)in Chinese eyes.METHODS:Twenty-one eyes of 21 patients with complicated RD were included in this retrospective study.All patients underwent pars plana vitrectomy with an internal tamponade using Densiron 68 HSO.Anatomical and functional results and complications were evaluated,including retinal status,visual acuity(VA),intraocular pressure(IOP),intraocular inflammation,lens opacity,and HSO emulsification.RESULTS:Allthepatients were followed up for 3mo to1y(5.8±1.16mo).Retinal reattachment was achieved in 19of 21 patients(90.5%).VA improved in 18 of 21 patients(85.7%),from 1.93 logMAR(±0.48)to 1.52 logMAR(±0.45)(P=0.001).Postoperative complications included early dispersion of HSO in 7 eyes(38.8%),cataract in 10 of 18phakic eyes(55.5%),moderate postoperative inflammation reaction in 10 eyes(47.6%),and elevated IOP in 5 eyes(23.8%),all of which were controlled by medication or by surgery.CONCLUSION:Highanatomical and functional success rates can be achieved with primary vitrectomy for complicated RD by using Densiron 68 HSO;however,it should not be ignored that Densiron 68 HSO can cause some complications in the eye.展开更多
AIM: To assess the efficacy and safety of a heavy silicone oil(Densiron 68) in the management of inferior retinal detachment recurrence.METHODS: A retrospective non-comparative consecutive case series study. Forty-nin...AIM: To assess the efficacy and safety of a heavy silicone oil(Densiron 68) in the management of inferior retinal detachment recurrence.METHODS: A retrospective non-comparative consecutive case series study. Forty-nine cases of complex inferior retinal detachment were treated using Densiron 68 heavy silicone oil(HSO) as the endotamponade. Our main purpose was anatomic reattachment following Densiron 68 removal. Functional outcomes, rate of recurrences, the presence of inflammatory complications and intraocular pressure alterations were evaluated. RESULTS: Forty-nine patients affected by complex retinal re-detachment were recruited. The mean follow-up was 7.6(±1.5) mo. The mean best corrected visual acuity after Densiron 68 removal was 0.95 log MAR, standard error(SE: 0.068). Retinal reattachment was 61.2% after first surgery and 81.6% after second surgery. Nineteen cases(38.8%) had recurrences when intraocular heavy silicon oil was in situ, 26.3%(5 cases) of which involved the inferior retina. CONCLUSION: Densiron 68 efficiently fills the inferior retinal periphery and might lower the risk of inferior proliferative vitreoretinopathy development, in particular after a standard silicon oil tamponade that reduces the proliferative process in the upper quadrants of the retina.展开更多
AIM:To evaluate the efficacy and safety of silicone oil(SO)as a corneal lubricant to improve visualization during vitrectomy.METHODS:Patients who underwent vitreoretinal surgery were divided into two groups.Group 1 wa...AIM:To evaluate the efficacy and safety of silicone oil(SO)as a corneal lubricant to improve visualization during vitrectomy.METHODS:Patients who underwent vitreoretinal surgery were divided into two groups.Group 1 was operated on with initial SO(Oxane 5700)as a corneal lubricant.Group 2 was operated on with initial lactated ringer’s solution(LRS)and then replaced with SO as required.Fundus clarity was scored during the surgery.Fluorescein staining was performed to determine the damage to corneal epithelium.RESULTS:Totally 114 eyes of 114 patients were included.Single SO use maintained a clear cornea and provided excellent visualization of surgical image.In group 1,the fundus clarity was grade 3 in 41/45 eyes and grade 2 in 4/45 eyes.In group 2,corneal edema frequently occurred after initial LRS use.The fundus clarity was grade 3 in 19/69 eyes,2 in 37/69 eyes and 1 in 13/69 eyes(P<0.05).SO was applied in 29 eyes of initial LRS use with subsequent corneal edema,which eliminated the corneal edema in 26 eyes.Corneal fluorescein staining score in group 1 was 0 in 28 eyes,1 in 11 eyes and 2 in 6 eyes,and 40,20 and 9,respectively,in group 2(all P>0.05).CONCLUSION:The use of SO as a corneal lubricant is effective and safe for preserving and improving corneal clarity and providing clear surgical field during vitrectomy.展开更多
BACKGROUND We report a case of eye-penetrating injury in which a massive silicone oil migration into the patient’s subconjunctival space and orbit occurred after vitrectomy.CASE SUMMARY A 30-year-old male patient sou...BACKGROUND We report a case of eye-penetrating injury in which a massive silicone oil migration into the patient’s subconjunctival space and orbit occurred after vitrectomy.CASE SUMMARY A 30-year-old male patient sought medical attention at Ganzhou People’s Hospital after experiencing pain and vision loss in his left eye due to a nail wound on December 9,2023.Diagnosis of penetrating injury caused by magnetic foreign body retention in the left eye and hospitalization for treatment.On December 9,2023,pars plana vitrectomy was performed on the left eye for intraocular foreign body removal,abnormal crystal extraction,retinal photocoagulation.Owing to the discovery of retinal detachment at the posterior pole during surgery,silicone oil was injected to fill the vitreous body,following which upper conjunctival bubble-like swelling was observed.Postoperative orbital computed tomography(CT)review indicated migration of silicone oil to the subconjunctival space and orbit through a self-permeable outlet.On December 18,2023,the patient sought treatment at the First Affiliated Hospital of Nanchang University,China.The patient presented with a pronounced foreign body sensation following left eye surgery.On December 20,2023,the foreign body was removed from the left eye frame and an intraocular examination was conducted.The posterior scleral tear had closed,leading to termination of the surgical procedure following supplementary laser treatment around the tear.The patient reported a significant reduction in ocular surface symptoms just one day after surgery.Furthermore,a notable decrease in the migration of silicone oil was observed in orbital CT scans.CONCLUSION The timing of silicone oil injection for an eye-penetrating injury should be carefully evaluated to avoid the possibility of silicone oil migration.展开更多
High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mecha...High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mechanism between asphaltene-wax is crucial to solve these problems,but it is still unclear.In this paper,molecular dynamics simulation was used to investigate the interaction between asphaltenewax and its effects on the crystallization behavior of waxes in heavy oil.Results show that molecules in pure wax are arranged in a paralleled geometry.But wax molecules in heavy oil,which are close to the surface of asphaltene aggregates,are bent and arranged irregularly.When the mass fraction of asphaltenes in asphaltene-wax system(ω_(asp))is 0-25 wt%,the attraction among wax molecules decreases and the bend degree of wax molecules increases with the increase ofω_(asp).Theω_(asp)increases from 0 to 25 wt%,and the attraction between asphaltene-wax is stronger than that among waxes.This causes that the wax precipitation point changes from 353 to 333 K.While theω_(asp)increases to 50 wt%,wax molecules are more dispersed owing to the steric hindrance of asphaltene aggregates,and the interaction among wax molecules transforms from attraction to repulsion.It causes that the ordered crystal structure of waxes can't be formed at normal temperature.Simultaneously,the asphaltene,with the higher molecular weight or the more hetero atoms,has more obvious inhibition to the formation of wax crystals.Besides,resins also have an obvious inhibition on the wax crystal due to the formation of asphalteneresin aggregates with a larger radius.Our results reveal the interaction mechanism between asphaltene-wax,and provide useful guidelines for the development of heavy oil.展开更多
Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore s...Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.展开更多
At high cycles of steam huff&puff,oil distribution in reservoirs becomes stronger heterogeneity due to steam channeling.Thermal solidification agent can be used to solve this problem.Its solution is a lowviscosity...At high cycles of steam huff&puff,oil distribution in reservoirs becomes stronger heterogeneity due to steam channeling.Thermal solidification agent can be used to solve this problem.Its solution is a lowviscosity liquid at normal temperature,but it can be solidified above 80℃.The plugging degree is up to 99%at 250℃.The sweep efficiency reaches 59.2%,which is 7.3%higher than pure steam injection.In addition,simultaneous injection of viscosity reducer and/or nitrogen foams can further enhance oil recovery.The mechanism of this technology depends on its strong plugging ability,which changes the flowing pattern of steam to effectively mobilize remaining oil.Viscosity reducer and nitrogen foams further expand the sweep range and extends the effective period.Therefore,thermal solidification agent can plug steam channeling paths and adjust steam flowing direction to significantly enhance oil recovery at high cycles of steam huff&puff.展开更多
Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition...Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition of demulsifiers for oil-water separation.This inevitably increases the exploitation cost and environmental pollution risk.Switchable surfactants have garnered much attention due to their dual capabilities of underground heavy oil emulsification and surface demulsification.This study focuses on the fundamental working principles and classification of novel switchable surfactants for oil displacement developed in recent years.It offers a comprehensive overview of the latest advances in the applications of switchable surfactants in the fields of enhanced oil recovery(EOR),oil sand washing,and oil-water separation.Furthermore,it highlights the existing challenges and future development directions of switchable surfactants for heavy oil recovery.展开更多
Heavy oil represents a vital petroleum resource worldwide.As one of the major producers,China is facing great challenges in effective and economic production of heavy oil due to reservoir complexity.Plenty of efforts ...Heavy oil represents a vital petroleum resource worldwide.As one of the major producers,China is facing great challenges in effective and economic production of heavy oil due to reservoir complexity.Plenty of efforts have been made to promote innovative advances in thermal recovery modes,methods,and processes for heavy oil in the country.The thermal recovery mode has been shifted from simple steam injection to a more comprehensive“thermal+"strategy,such as a novel N2-steam hybrid process and CO_(2)-enhanced thermal recovery techniques.These advanced techniques break through the challenges of heavy oil extraction from less accessible reservoirs with thinner oil layers and greater burial depths.Regarding thermal recovery methods,China has developed the steam-assisted gravity drainage method integrating flooding and drainage(also referred to as the hybrid flooding-drainage SAGD technology)for highly heterogeneous ultra-heavy oil reservoirs and the fire flooding method for nearly depleted heavy oil reservoirs,substantially improving oil recovery.Furthermore,a range of processes have been developed for heavy oil production,including the open hole completion process using sand control screens for horizontal wells,the process of integrated injection-recovery with horizontal pump for horizontal wells,the steam dryness maintenance,measurement,and control process,efficient and environment-friendly circulating fluidized bed(CFB)boilers with high steam dryness,the recycling process of produced water,and the thermal recovery process for offshore heavy oil.Based on the advances in methodology,technology,and philosophy,a series of supporting technologies for heavy oil production have been developed,leading to the breakthrough of existing technical limit of heavy oil recovery and the expansion into new exploitation targets.For the future heavy oil production in China,it is necessary to embrace a green,low-carbon,and energy-efficient development strategy,and to expand heavy oil extraction in reservoirs with larger burial depth,more viscous oil,thinner oil layers,and lower permeability.Moreover,it is highly recommended to collaboratively maximize oil recovery and oil-to-steam ratio through technological innovations,and boost intelligentization of heavy oil production.展开更多
Acquiring accurate molecular-level information about petroleum is crucial for refining and chemical enterprises to implement the“selection of the optimal processing route”strategy.With the development of data predic...Acquiring accurate molecular-level information about petroleum is crucial for refining and chemical enterprises to implement the“selection of the optimal processing route”strategy.With the development of data prediction systems represented by machine learning,it has become possible for real-time prediction systems of petroleum fraction molecular information to replace analyses such as gas chromatography and mass spectrometry.However,the biggest difficulty lies in acquiring the data required for training the neural network.To address these issues,this work proposes an innovative method that utilizes the Aspen HYSYS and full two-dimensional gas chromatography-time-of-flight mass spectrometry to establish a comprehensive training database.Subsequently,a deep neural network prediction model is developed for heavy distillate oil to predict its composition in terms of molecular structure.After training,the model accurately predicts the molecular composition of catalytically cracked raw oil in a refinery.The validation and test sets exhibit R2 values of 0.99769 and 0.99807,respectively,and the average relative error of molecular composition prediction for raw materials of the catalytic cracking unit is less than 7%.Finally,the SHAP(SHapley Additive ExPlanation)interpretation method is used to disclose the relationship among different variables by performing global and local weight comparisons and correlation analyses.展开更多
Tungstated zirconia(WO_(3)/ZrO_(2))solid acid catalysts with different WO_(3) contents were prepared by a hydrothermal method and then used in the catalytic aquathermolysis of heavy oil from Xinjiang.The WO_(3)/ZrO_(2...Tungstated zirconia(WO_(3)/ZrO_(2))solid acid catalysts with different WO_(3) contents were prepared by a hydrothermal method and then used in the catalytic aquathermolysis of heavy oil from Xinjiang.The WO_(3)/ZrO_(2) solid acid catalyst was characterized by a range of characterization methods,including X-ray diffraction,NH3-temperature programmed desorption,and pyridine infrared spectroscopy.The WO_(3) content of the WO_(3)/ZrO_(2) catalysts had an important impact on the structure and property of the catalysts.When the WO_(3) mass fraction was 20%,it facilitated the formation of tetragonal zirconia,thereby enhancing the creation of robust acidic sites.Acidity is considered to have a strong impact on the catalytic performance of the aquathermolysis of heavy oil.When the catalyst containing 20%WO_(3) was used to catalyze the aquathermolysis of heavy oil under conditions of 14.5 MPa,340℃,and 24 h,the viscosity of heavy oil decreased from 47266 to 5398 mPa·s and the viscosity reduction rate reached 88.6%.The physicochemical properties of heavy oil before and after the aquathermolysis were analyzed using a saturates,aromatics,resins,and asphaltenes analysis,gas chromatography,elemental analysis,densimeter etc.After the aquathermolysis,the saturate and aromatic contents significantly increased from 43.3%to 48.35%and 19.47%to 21.88%,respectively,with large reductions in the content of resin and asphaltene from 28.22%to 25.06%and 5.36%to 2.03%,respectively.The sulfur and nitrogen contents,and the density of the oil were significantly decreased.These factors were likely the main reasons for promoting the viscosity reduction of heavy oil during the aquathermolysis over the WO_(3)/ZrO_(2) solid acid catalysts.展开更多
CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability...CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability,maintains reservoir pressure,and increases reservoir drainage capacity.Taking the Badaowan Formation as an example,in this study a detailed three-dimensional geomechanical model based on static data from well logging interpretations is elaborated,which can take into account both vertical and horizontal geological variations and mechanical characteristics.A comprehensive analysis of the impact of key construction parameters on Pre-CO_(2) based fracturing(such as cluster spacing and injection volume),is therefore conducted.Thereafter,using optimized construction parameters,a non-structured grid for dynamic development prediction is introduced,and the capacity variations of different production scenarios are assessed.On the basis of the simulation results,reasonable fracturing parameters are finally determined,including cluster spacing,fracturing fluid volume,proppant concentration,and well spacing.展开更多
AIM:To evaluate the postoperative refractive prediction error(PE)and determine the factors that af fect the refractive outcomes of combined pars plana vitrectomy(PPV)or silicone oil removal(SOR)with cataract surgery.M...AIM:To evaluate the postoperative refractive prediction error(PE)and determine the factors that af fect the refractive outcomes of combined pars plana vitrectomy(PPV)or silicone oil removal(SOR)with cataract surgery.METHODS:The study is a retrospective,case-series study.Totally 301 eyes of 301 patients undergoing combined PPV/SOR with cataract surgery were enrolled.Eligible individuals were separated into four groups according to their preoperative diagnoses:silicone oil-filled eyes after PPV(group 1),epiretinal membrane(group 2),macular hole(group 3),and primary retinal detachment(RD;group 4).The variables af fecting postoperative refractive outcomes were analyzed,including age,gender,preoperative best-corrected visual acuity(BCVA),axial length(AL),keratometry average,anterior chamber depth(ACD),intraocular tamponade,and vitreoretinal pathology.The outcome measurements include the mean refractive PE and the proportions of eyes with a PE within±0.50 diopter(D)and±1.00 D.RESULTS:For all patients,the mean PE was-0.04±1.17 D,and 50.17%of patients(eyes)had a PE within±0.50 D.There was a significant difference in refractive outcomes among the four groups(P=0.028),with RD(group 4)showing the least favorable refractive outcome.In multivariate regression analysis,only AL,vitreoretinal pathology,and ACD were strongly associated with PE(all P<0.01).Univariate analysis revealed that longer eyes(AL>26 mm)and a deeper ACD were correlated with hyperopic PE,and shorter eyes(AL<26 mm)and a shallower ACD were correlated with myopic PE.CONCLUSION:RD patients have the least favorable refractive outcome.AL,vitreoretinal pathology,and ACD are strongly associated with PE in the combined surgery.These three factors affect refractive outcomes and thus can be used to predict a better postoperative refractive outcome in clinical practice.展开更多
AIM:To determine the incidence and predictive factors for epiretinal membrane(ERM)formation in eyes with complicated primary rhegmatogenous retinal detachment(RRD)tamponaded with silicone oil(SO).METHODS:This retrospe...AIM:To determine the incidence and predictive factors for epiretinal membrane(ERM)formation in eyes with complicated primary rhegmatogenous retinal detachment(RRD)tamponaded with silicone oil(SO).METHODS:This retrospective case-control study included 141 consecutive patients with(51 eyes)and without(90 eyes)ERM formation after primary pars plana vitrectomy(PPV)and SO tamponade for complicated RRD.The risk factors for ERM were assessed using logistic regression analysis.RESULTS:The prevalence of postoperative ERM was 36.2%(51/141).Multivariate logistic regression analysis showed that the risk factors for ERM in SO-tamponaded eyes included preoperative proliferative vitreoretinopathy[PVR;odds ratio(OR),2.578;95%confidence interval(CI)1.580–4.205,P<0.001],preoperative choroidal detachment(OR,4.454;95%CI 1.369–14.498,P=0.013),and photocoagulation energy(OR,2.700;95%CI 1.047–6.962,P=0.040).The duration of the preoperative symptoms,intraocular SO tamponade time,giant retinal tear,preoperative vitreous hemorrhage,preoperative bestcorrected visual acuity,number of breaks,quadrants of RRD,axial length,and photocoagulation points were not predictive factors for ERM formation.CONCLUSION:Preoperative PVR,choroidal detachment,and photocoagulation energy are risk factors of ERM formation after complicated RRD repair.Better ophthalmic care as well as patient education are necessary for such patients with risk factors.展开更多
AIM:To describe the clinical and radiologic features of retrolaminar migration silicone oil(SiO)and observe the dynamic position of ventricular oil accumulation in supine and prone.METHODS:For this retrospective study...AIM:To describe the clinical and radiologic features of retrolaminar migration silicone oil(SiO)and observe the dynamic position of ventricular oil accumulation in supine and prone.METHODS:For this retrospective study,29 patients who had a history of SiO injection treatment and underwent unenhanced head computed tomography(CT)were included from January 2019 to October 2022.The patients were divided into migration-positive and negative groups.Clinical history and CT features were compared using Whitney U and Fisher’s exact tests.The dynamic position of SiO was observed within the ventricular system in supine and prone.CT images were visually assessed for SiO migration along the retrolaminar involving pathways for vision(optic nerve,chiasm,and tract)and ventricular system.RESULTS:Intraocular SiO migration was found in 5 of the 29 patients(17.24%),with SiO at the optic nerve head(n=1),optic nerve(n=4),optic chiasm(n=1),optic tract(n=1),and within lateral ventricles(n=1).The time interval between SiO injection and CT examination of migration-positive cases was significantly higher than that of migration-negative patients(22.8±16.5mo vs 13.1±2.6mo,P<0.001).The hyperdense lesion located in the frontal horns of the right lateral ventricle migrated to the fourth ventricle when changing the position from supine to prone.CONCLUSION:Although SiO retrolaminar migration is unusual,the clinician and radiologist should be aware of migration routes.The supine combined with prone examination is the first-choice method to confirm the presence of SiO in the ventricular system.展开更多
Background: Silicone oil (SO) has been demonstrated with concrete efficacy and safety in the therapy of complex vitreoretinal diseases. SO is schemed to be cleared within several weeks or months after tamponade, but i...Background: Silicone oil (SO) has been demonstrated with concrete efficacy and safety in the therapy of complex vitreoretinal diseases. SO is schemed to be cleared within several weeks or months after tamponade, but it’s inevitable for permanent or residual SO in a fraction of patients under extremely complicated clinical conditions. Here, we presented a case of silicone oil removal after 10 years, mainly to observe the disadvantages of long-term persistence. Case presentation: A 69-year-old female with pathologic myopia denied trauma history who had undergone pars plana vitrectomy (PPV), retinal reattachment, laser, and silicone oil tamponade in 2012 presented to our hospital with eye pain and headache, no light perception of her right eye for six months. The slit-lamp biomicroscopy examination for OD indicated evident conjunctival congestion, new blood vessels invasion to the limbus, foggy edema of corneal epithelium, folds of Descemet’s membrane and corneal endothelial edema. There were obvious emulsified silicone oil particles above the anterior chamber. Goldmann’s applanation tonometry test revealed the intraocular pressure was as high as 45/17mmHg. From ocular ultrasound, we saw that the vitreous cavity was filled with silicone oil in right eye;as for the left eye, it showed marked axial elongation and posterior scleral staphyloma. We were unable to obtain more information from fundus photography and macular optical coherence tomography (OCT) due to edema of the cornea. After the silicone oil was removed successfully from her vitreous cavity, although there was no improvement in the patient’s vision (no light perception), she was still satisfied with the relief from eye pain and headache benefited from the reduction of high intraocular pressure (Goldmann’s intraocular pressure decreased to 19/14mmHg). Conclusion: Patients after PPV should remove silicone oil in time to avoid corneal damage, intraocular hypertension, lens opacity and retinal damage induced by long-term silicone tamponade.展开更多
Steam flooding with the assistance of carbon dioxide (CO_(2)) and chemicals is an effective approach for enhancing super heavy oil recovery. However, the promotion and application of CO_(2) and chemical agent-assisted...Steam flooding with the assistance of carbon dioxide (CO_(2)) and chemicals is an effective approach for enhancing super heavy oil recovery. However, the promotion and application of CO_(2) and chemical agent-assisted steam flooding technology have been restricted by the current lack of research on the synergistic effect of CO_(2) and chemical agents on enhanced steam flooding heat transfer. The novel experiments on CO_(2)–chemicals cooperate affected steam condensation and seepage were conducted by adding CO_(2) and two chemicals (sodium dodecyl sulfate (SDS) and the betaine temperature-salt resistant foaming agent ZK-05200).According to the experimental findings, a “film” formed on the heat-transfer medium surface following the co-injection of CO_(2) and the chemical to impede the steam heat transfer, reducing the heat transfer efficiency of steam, heat flux and condensation heat transfer coefficient. The steam seepage experiment revealed that the temperature at the back end of the sandpack model was dramatically raised by 3.5–12.8 °C by adding CO_(2) and chemical agents, achieving the goal of driving deep-formation heavy oil. The combined effect of CO_(2) and SDS was the most effective for improving steam heat transfer, the steam heat loss was reduced by 6.2%, the steam condensation cycle was prolonged by 1.3 times, the condensation heat transfer coefficient was decreased by 15.5%, and the heavy oil recovery was enhanced by 9.82%. Theoretical recommendations are offered in this study for improving the CO_(2)–chemical-assisted steam flooding technique.展开更多
Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and ...Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and possible potential for heavy oil reservoirs.However,the addition of polymer may cause problems with injection in the case of highly viscous oil.Hence,in this study the feasibility of alkali-cosolvent(AC)flooding in heavy oil reservoirs was investigated via several groups of experiments.The interfacial tension between various AC formulations and heavy crude oil was measured to select appropriate formulations.Phase behavior tests were performed to determine the most appropriate formulation and conditions for the generation of a microemulsion.Sandpack flooding experiments were carried out to investigate the displacement efficiency of the selected Ac formulation.The results showed that the interfacial tension between an AC formulation and heavy oil could be reduced to below 1o-3 mN/m but differed greatly between different types of cosolvent.A butanol random polyether series displayed good performance in reducing the water-oil interfacial tension,which made it possible to form a Type Il microemulsion in reservoir conditions.According to the results of the phase behavior tests,the optimal salinity for different formulations with four cosolvent concentrations(0.5 wt%,1 wt%,2 wt%,and 3 wt%)was 4000,8000,14000,and 20000 ppm,respectively.The results of rheological measurements showed that Type Ill microemulsion had a viscosity that was ten times that of water.The results of sandpack flooding experiments showed that,in comparison with waterflooding,the injection of a certain Ac formulation slug could reduce the injection pressure.The pressure gradient during waterflooding and AC flooding was around 870 and 30-57 kPa/m,respectively.With the addition of an AC slug,the displacement efficiency was 30%-50%higher than in the case of waterflooding.展开更多
Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results ...Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results for seismic inversion of heavy oil reservoir. To describe the viscoelastic behavior of heavy oil, we modeled the elastic properties of heavy oil with varying viscosity and frequency using the Cole-Cole-Maxwell (CCM) model. Then, we used a CCoherent Potential Approximation (CPA) instead of the Gassmann equations to account for the fluid effect, by extending the single-phase fluid condition to two-phase fluid (heavy oil and water) condition, so that partial saturation of heavy oil can be considered. This rock physics model establishes the relationship between the elastic modulus of reservoir rock and viscosity, frequency and saturation. The viscosity of the heavy oil and the elastic moduli and porosity of typical reservoir rock samples were measured in laboratory, which were used for calibration of the rock physics model. The well-calibrated frequency-variant CPA model was applied to the prediction of the P- and S-wave velocities in the seismic frequency range (1–100 Hz) and the inversion of petrophysical parameters for a heavy oil reservoir. The pre-stack inversion results of elastic parameters are improved compared with those results using the CPA model in the sonic logging frequency (∼10 kHz), or conventional rock physics model such as the Xu-Payne model. In addition, the inversion of the porosity of the reservoir was conducted with the simulated annealing method, and the result fits reasonably well with the logging curve and depicts the location of the heavy oil reservoir on the time slice. The application of the laboratory-calibrated CPA model provides better results with the velocity dispersion correction, suggesting the important role of accurate frequency dependent rock physics models in the seismic prediction of heavy oil reservoirs.展开更多
Most heavy crude oils underwent biodegradation and generated a significant amount of naphthenic acids. Naphthenic acids are polar compounds with the carboxylic group and are considered as a major factor affecting the ...Most heavy crude oils underwent biodegradation and generated a significant amount of naphthenic acids. Naphthenic acids are polar compounds with the carboxylic group and are considered as a major factor affecting the oil viscosity. However, the relationship between the molecular composition of naphthenic acids and oil viscosity is not well understood. This study examined a “clean” heavy oil with low contents of heteroatoms but had a high content of naphthenic acids. Naphthenic acids were fractionated by distillation and caustic extraction. The molecular composition was characterized by high-resolution Orbitrap mass spectrometry. It was found that the 2- and 3-ring naphthenic monoacids with 15–35 carbon atoms are dominant components of the acid fractions;the caustic extraction is capable of isolating naphthenic acids with less than 35 carbons, which is equivalent to the upper limit of the distillable components, but not those in the residue fraction;the total acid number of the heavy distillates is higher than that of the residue fraction;the viscosity of the distillation fraction increases exponentially with an increased boiling point of the distillates. Blending experiments indicates that there is a strong correlation between the oil viscosity and acids content, although the acid content is only a few percent of the total oil.展开更多
文摘AIM:To evaluate the safety and efficacy of Densiron 68 heavy silicone oil (HSO) tamponade for complicated retinal detachment(RD)in Chinese eyes.METHODS:Twenty-one eyes of 21 patients with complicated RD were included in this retrospective study.All patients underwent pars plana vitrectomy with an internal tamponade using Densiron 68 HSO.Anatomical and functional results and complications were evaluated,including retinal status,visual acuity(VA),intraocular pressure(IOP),intraocular inflammation,lens opacity,and HSO emulsification.RESULTS:Allthepatients were followed up for 3mo to1y(5.8±1.16mo).Retinal reattachment was achieved in 19of 21 patients(90.5%).VA improved in 18 of 21 patients(85.7%),from 1.93 logMAR(±0.48)to 1.52 logMAR(±0.45)(P=0.001).Postoperative complications included early dispersion of HSO in 7 eyes(38.8%),cataract in 10 of 18phakic eyes(55.5%),moderate postoperative inflammation reaction in 10 eyes(47.6%),and elevated IOP in 5 eyes(23.8%),all of which were controlled by medication or by surgery.CONCLUSION:Highanatomical and functional success rates can be achieved with primary vitrectomy for complicated RD by using Densiron 68 HSO;however,it should not be ignored that Densiron 68 HSO can cause some complications in the eye.
文摘AIM: To assess the efficacy and safety of a heavy silicone oil(Densiron 68) in the management of inferior retinal detachment recurrence.METHODS: A retrospective non-comparative consecutive case series study. Forty-nine cases of complex inferior retinal detachment were treated using Densiron 68 heavy silicone oil(HSO) as the endotamponade. Our main purpose was anatomic reattachment following Densiron 68 removal. Functional outcomes, rate of recurrences, the presence of inflammatory complications and intraocular pressure alterations were evaluated. RESULTS: Forty-nine patients affected by complex retinal re-detachment were recruited. The mean follow-up was 7.6(±1.5) mo. The mean best corrected visual acuity after Densiron 68 removal was 0.95 log MAR, standard error(SE: 0.068). Retinal reattachment was 61.2% after first surgery and 81.6% after second surgery. Nineteen cases(38.8%) had recurrences when intraocular heavy silicon oil was in situ, 26.3%(5 cases) of which involved the inferior retina. CONCLUSION: Densiron 68 efficiently fills the inferior retinal periphery and might lower the risk of inferior proliferative vitreoretinopathy development, in particular after a standard silicon oil tamponade that reduces the proliferative process in the upper quadrants of the retina.
基金Supported by the Shanghai Key Clinical Specialty,Shanghai Eye Disease Research Center(No.2022ZZ01003)the Science and Technology Commission of Shanghai(No.20DZ2270800).
文摘AIM:To evaluate the efficacy and safety of silicone oil(SO)as a corneal lubricant to improve visualization during vitrectomy.METHODS:Patients who underwent vitreoretinal surgery were divided into two groups.Group 1 was operated on with initial SO(Oxane 5700)as a corneal lubricant.Group 2 was operated on with initial lactated ringer’s solution(LRS)and then replaced with SO as required.Fundus clarity was scored during the surgery.Fluorescein staining was performed to determine the damage to corneal epithelium.RESULTS:Totally 114 eyes of 114 patients were included.Single SO use maintained a clear cornea and provided excellent visualization of surgical image.In group 1,the fundus clarity was grade 3 in 41/45 eyes and grade 2 in 4/45 eyes.In group 2,corneal edema frequently occurred after initial LRS use.The fundus clarity was grade 3 in 19/69 eyes,2 in 37/69 eyes and 1 in 13/69 eyes(P<0.05).SO was applied in 29 eyes of initial LRS use with subsequent corneal edema,which eliminated the corneal edema in 26 eyes.Corneal fluorescein staining score in group 1 was 0 in 28 eyes,1 in 11 eyes and 2 in 6 eyes,and 40,20 and 9,respectively,in group 2(all P>0.05).CONCLUSION:The use of SO as a corneal lubricant is effective and safe for preserving and improving corneal clarity and providing clear surgical field during vitrectomy.
基金National Natural Science Foundation of China,No.82160207Technology Plan of Jiangxi Provincial Health and Health Commission,No.202130156+1 种基金Young Scholar Project of the First Affiliated Hospital of Nanchang University,No.YFYPY202219Science and Key Projects of Jiangxi Youth Science Fund,No.20202ACBL216008.
文摘BACKGROUND We report a case of eye-penetrating injury in which a massive silicone oil migration into the patient’s subconjunctival space and orbit occurred after vitrectomy.CASE SUMMARY A 30-year-old male patient sought medical attention at Ganzhou People’s Hospital after experiencing pain and vision loss in his left eye due to a nail wound on December 9,2023.Diagnosis of penetrating injury caused by magnetic foreign body retention in the left eye and hospitalization for treatment.On December 9,2023,pars plana vitrectomy was performed on the left eye for intraocular foreign body removal,abnormal crystal extraction,retinal photocoagulation.Owing to the discovery of retinal detachment at the posterior pole during surgery,silicone oil was injected to fill the vitreous body,following which upper conjunctival bubble-like swelling was observed.Postoperative orbital computed tomography(CT)review indicated migration of silicone oil to the subconjunctival space and orbit through a self-permeable outlet.On December 18,2023,the patient sought treatment at the First Affiliated Hospital of Nanchang University,China.The patient presented with a pronounced foreign body sensation following left eye surgery.On December 20,2023,the foreign body was removed from the left eye frame and an intraocular examination was conducted.The posterior scleral tear had closed,leading to termination of the surgical procedure following supplementary laser treatment around the tear.The patient reported a significant reduction in ocular surface symptoms just one day after surgery.Furthermore,a notable decrease in the migration of silicone oil was observed in orbital CT scans.CONCLUSION The timing of silicone oil injection for an eye-penetrating injury should be carefully evaluated to avoid the possibility of silicone oil migration.
基金financially supported by the Project funded by China Postdoctoral Science Foundation (NO.2022M723500)the National Natural Science Foundation of China (NO.52204069)the Sinopec Science and Technology Project of China (NO.P22015)。
文摘High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mechanism between asphaltene-wax is crucial to solve these problems,but it is still unclear.In this paper,molecular dynamics simulation was used to investigate the interaction between asphaltenewax and its effects on the crystallization behavior of waxes in heavy oil.Results show that molecules in pure wax are arranged in a paralleled geometry.But wax molecules in heavy oil,which are close to the surface of asphaltene aggregates,are bent and arranged irregularly.When the mass fraction of asphaltenes in asphaltene-wax system(ω_(asp))is 0-25 wt%,the attraction among wax molecules decreases and the bend degree of wax molecules increases with the increase ofω_(asp).Theω_(asp)increases from 0 to 25 wt%,and the attraction between asphaltene-wax is stronger than that among waxes.This causes that the wax precipitation point changes from 353 to 333 K.While theω_(asp)increases to 50 wt%,wax molecules are more dispersed owing to the steric hindrance of asphaltene aggregates,and the interaction among wax molecules transforms from attraction to repulsion.It causes that the ordered crystal structure of waxes can't be formed at normal temperature.Simultaneously,the asphaltene,with the higher molecular weight or the more hetero atoms,has more obvious inhibition to the formation of wax crystals.Besides,resins also have an obvious inhibition on the wax crystal due to the formation of asphalteneresin aggregates with a larger radius.Our results reveal the interaction mechanism between asphaltene-wax,and provide useful guidelines for the development of heavy oil.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFA0702400)the National Natural Science Foundation of China (Grant No.52174050)+1 种基金the Natural Science Foundation of Shandong Province (Grant No.ZR2020ME088)the National Natural Science Foundation of Qingdao (Grant No.23-2-1-227-zyyd-jch)。
文摘Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.
基金supported by National Natural Science Foundation of China(52074321)Natural Science Foundation of Beijing Municipality,China(3192026)。
文摘At high cycles of steam huff&puff,oil distribution in reservoirs becomes stronger heterogeneity due to steam channeling.Thermal solidification agent can be used to solve this problem.Its solution is a lowviscosity liquid at normal temperature,but it can be solidified above 80℃.The plugging degree is up to 99%at 250℃.The sweep efficiency reaches 59.2%,which is 7.3%higher than pure steam injection.In addition,simultaneous injection of viscosity reducer and/or nitrogen foams can further enhance oil recovery.The mechanism of this technology depends on its strong plugging ability,which changes the flowing pattern of steam to effectively mobilize remaining oil.Viscosity reducer and nitrogen foams further expand the sweep range and extends the effective period.Therefore,thermal solidification agent can plug steam channeling paths and adjust steam flowing direction to significantly enhance oil recovery at high cycles of steam huff&puff.
基金supported by a key project of the National Natural Science Foundation of China(No 21938003)the Postdoctoral Foundation of the PetroChina Dagang Oilfield Company(No.2023BO59).
文摘Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition of demulsifiers for oil-water separation.This inevitably increases the exploitation cost and environmental pollution risk.Switchable surfactants have garnered much attention due to their dual capabilities of underground heavy oil emulsification and surface demulsification.This study focuses on the fundamental working principles and classification of novel switchable surfactants for oil displacement developed in recent years.It offers a comprehensive overview of the latest advances in the applications of switchable surfactants in the fields of enhanced oil recovery(EOR),oil sand washing,and oil-water separation.Furthermore,it highlights the existing challenges and future development directions of switchable surfactants for heavy oil recovery.
基金funded by a project of the National Natural Science Foundation of China entitled Basic study on mechanisms and key technologies of high efficiency hybrid multi-element thermal recovery in marginal heavy oil reservoirs(No.U20B6003).
文摘Heavy oil represents a vital petroleum resource worldwide.As one of the major producers,China is facing great challenges in effective and economic production of heavy oil due to reservoir complexity.Plenty of efforts have been made to promote innovative advances in thermal recovery modes,methods,and processes for heavy oil in the country.The thermal recovery mode has been shifted from simple steam injection to a more comprehensive“thermal+"strategy,such as a novel N2-steam hybrid process and CO_(2)-enhanced thermal recovery techniques.These advanced techniques break through the challenges of heavy oil extraction from less accessible reservoirs with thinner oil layers and greater burial depths.Regarding thermal recovery methods,China has developed the steam-assisted gravity drainage method integrating flooding and drainage(also referred to as the hybrid flooding-drainage SAGD technology)for highly heterogeneous ultra-heavy oil reservoirs and the fire flooding method for nearly depleted heavy oil reservoirs,substantially improving oil recovery.Furthermore,a range of processes have been developed for heavy oil production,including the open hole completion process using sand control screens for horizontal wells,the process of integrated injection-recovery with horizontal pump for horizontal wells,the steam dryness maintenance,measurement,and control process,efficient and environment-friendly circulating fluidized bed(CFB)boilers with high steam dryness,the recycling process of produced water,and the thermal recovery process for offshore heavy oil.Based on the advances in methodology,technology,and philosophy,a series of supporting technologies for heavy oil production have been developed,leading to the breakthrough of existing technical limit of heavy oil recovery and the expansion into new exploitation targets.For the future heavy oil production in China,it is necessary to embrace a green,low-carbon,and energy-efficient development strategy,and to expand heavy oil extraction in reservoirs with larger burial depth,more viscous oil,thinner oil layers,and lower permeability.Moreover,it is highly recommended to collaboratively maximize oil recovery and oil-to-steam ratio through technological innovations,and boost intelligentization of heavy oil production.
基金the National Natural Science Foundation of China(22108307)the Natural Science Foundation of Shandong Province(ZR2020KB006)the Outstanding Youth Fund of Shandong Provincial Natural Science Foundation(ZR2020YQ17).
文摘Acquiring accurate molecular-level information about petroleum is crucial for refining and chemical enterprises to implement the“selection of the optimal processing route”strategy.With the development of data prediction systems represented by machine learning,it has become possible for real-time prediction systems of petroleum fraction molecular information to replace analyses such as gas chromatography and mass spectrometry.However,the biggest difficulty lies in acquiring the data required for training the neural network.To address these issues,this work proposes an innovative method that utilizes the Aspen HYSYS and full two-dimensional gas chromatography-time-of-flight mass spectrometry to establish a comprehensive training database.Subsequently,a deep neural network prediction model is developed for heavy distillate oil to predict its composition in terms of molecular structure.After training,the model accurately predicts the molecular composition of catalytically cracked raw oil in a refinery.The validation and test sets exhibit R2 values of 0.99769 and 0.99807,respectively,and the average relative error of molecular composition prediction for raw materials of the catalytic cracking unit is less than 7%.Finally,the SHAP(SHapley Additive ExPlanation)interpretation method is used to disclose the relationship among different variables by performing global and local weight comparisons and correlation analyses.
基金the financial support from the Open Fund Project of the National Oil Shale Exploitation Research and Development Center,China(No.33550000-22-ZC0613-0255)the Graduate Student Innovation and Practical Ability Training Program of Xi’an Shiyou University(No.YCS23213098)+3 种基金the National Natural Science Foundation of China(No.52274039)the Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2024JC-YBMS-085)the CNPC Innovation Found(No.2022DQ02-0402)The authors also thank the Modern Analysis and Test Center of Xi’an Shiyou University for their help with the characterization of catalysts and analysis of products.
文摘Tungstated zirconia(WO_(3)/ZrO_(2))solid acid catalysts with different WO_(3) contents were prepared by a hydrothermal method and then used in the catalytic aquathermolysis of heavy oil from Xinjiang.The WO_(3)/ZrO_(2) solid acid catalyst was characterized by a range of characterization methods,including X-ray diffraction,NH3-temperature programmed desorption,and pyridine infrared spectroscopy.The WO_(3) content of the WO_(3)/ZrO_(2) catalysts had an important impact on the structure and property of the catalysts.When the WO_(3) mass fraction was 20%,it facilitated the formation of tetragonal zirconia,thereby enhancing the creation of robust acidic sites.Acidity is considered to have a strong impact on the catalytic performance of the aquathermolysis of heavy oil.When the catalyst containing 20%WO_(3) was used to catalyze the aquathermolysis of heavy oil under conditions of 14.5 MPa,340℃,and 24 h,the viscosity of heavy oil decreased from 47266 to 5398 mPa·s and the viscosity reduction rate reached 88.6%.The physicochemical properties of heavy oil before and after the aquathermolysis were analyzed using a saturates,aromatics,resins,and asphaltenes analysis,gas chromatography,elemental analysis,densimeter etc.After the aquathermolysis,the saturate and aromatic contents significantly increased from 43.3%to 48.35%and 19.47%to 21.88%,respectively,with large reductions in the content of resin and asphaltene from 28.22%to 25.06%and 5.36%to 2.03%,respectively.The sulfur and nitrogen contents,and the density of the oil were significantly decreased.These factors were likely the main reasons for promoting the viscosity reduction of heavy oil during the aquathermolysis over the WO_(3)/ZrO_(2) solid acid catalysts.
基金supported by the Cutting-Edge Project Foundation of Petro-China(Cold-Based Method to Enhance Heavy Oil Recovery)(Grant No.2021DJ1406)Open Fund(PLN201802)of National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University).
文摘CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability,maintains reservoir pressure,and increases reservoir drainage capacity.Taking the Badaowan Formation as an example,in this study a detailed three-dimensional geomechanical model based on static data from well logging interpretations is elaborated,which can take into account both vertical and horizontal geological variations and mechanical characteristics.A comprehensive analysis of the impact of key construction parameters on Pre-CO_(2) based fracturing(such as cluster spacing and injection volume),is therefore conducted.Thereafter,using optimized construction parameters,a non-structured grid for dynamic development prediction is introduced,and the capacity variations of different production scenarios are assessed.On the basis of the simulation results,reasonable fracturing parameters are finally determined,including cluster spacing,fracturing fluid volume,proppant concentration,and well spacing.
基金Supported by the National Natural Science Foundation of China (No.81770972,No.81970843)。
文摘AIM:To evaluate the postoperative refractive prediction error(PE)and determine the factors that af fect the refractive outcomes of combined pars plana vitrectomy(PPV)or silicone oil removal(SOR)with cataract surgery.METHODS:The study is a retrospective,case-series study.Totally 301 eyes of 301 patients undergoing combined PPV/SOR with cataract surgery were enrolled.Eligible individuals were separated into four groups according to their preoperative diagnoses:silicone oil-filled eyes after PPV(group 1),epiretinal membrane(group 2),macular hole(group 3),and primary retinal detachment(RD;group 4).The variables af fecting postoperative refractive outcomes were analyzed,including age,gender,preoperative best-corrected visual acuity(BCVA),axial length(AL),keratometry average,anterior chamber depth(ACD),intraocular tamponade,and vitreoretinal pathology.The outcome measurements include the mean refractive PE and the proportions of eyes with a PE within±0.50 diopter(D)and±1.00 D.RESULTS:For all patients,the mean PE was-0.04±1.17 D,and 50.17%of patients(eyes)had a PE within±0.50 D.There was a significant difference in refractive outcomes among the four groups(P=0.028),with RD(group 4)showing the least favorable refractive outcome.In multivariate regression analysis,only AL,vitreoretinal pathology,and ACD were strongly associated with PE(all P<0.01).Univariate analysis revealed that longer eyes(AL>26 mm)and a deeper ACD were correlated with hyperopic PE,and shorter eyes(AL<26 mm)and a shallower ACD were correlated with myopic PE.CONCLUSION:RD patients have the least favorable refractive outcome.AL,vitreoretinal pathology,and ACD are strongly associated with PE in the combined surgery.These three factors affect refractive outcomes and thus can be used to predict a better postoperative refractive outcome in clinical practice.
基金Supported by the National Natural Science Foundation of China(No.81570865)。
文摘AIM:To determine the incidence and predictive factors for epiretinal membrane(ERM)formation in eyes with complicated primary rhegmatogenous retinal detachment(RRD)tamponaded with silicone oil(SO).METHODS:This retrospective case-control study included 141 consecutive patients with(51 eyes)and without(90 eyes)ERM formation after primary pars plana vitrectomy(PPV)and SO tamponade for complicated RRD.The risk factors for ERM were assessed using logistic regression analysis.RESULTS:The prevalence of postoperative ERM was 36.2%(51/141).Multivariate logistic regression analysis showed that the risk factors for ERM in SO-tamponaded eyes included preoperative proliferative vitreoretinopathy[PVR;odds ratio(OR),2.578;95%confidence interval(CI)1.580–4.205,P<0.001],preoperative choroidal detachment(OR,4.454;95%CI 1.369–14.498,P=0.013),and photocoagulation energy(OR,2.700;95%CI 1.047–6.962,P=0.040).The duration of the preoperative symptoms,intraocular SO tamponade time,giant retinal tear,preoperative vitreous hemorrhage,preoperative bestcorrected visual acuity,number of breaks,quadrants of RRD,axial length,and photocoagulation points were not predictive factors for ERM formation.CONCLUSION:Preoperative PVR,choroidal detachment,and photocoagulation energy are risk factors of ERM formation after complicated RRD repair.Better ophthalmic care as well as patient education are necessary for such patients with risk factors.
基金Supported by Key Research and Development Project of Zhejiang Province of China(No.2020C01058)Medical Science and Technology Project of Zhejiang Province(No.2022PY038,No.2023KY493).
文摘AIM:To describe the clinical and radiologic features of retrolaminar migration silicone oil(SiO)and observe the dynamic position of ventricular oil accumulation in supine and prone.METHODS:For this retrospective study,29 patients who had a history of SiO injection treatment and underwent unenhanced head computed tomography(CT)were included from January 2019 to October 2022.The patients were divided into migration-positive and negative groups.Clinical history and CT features were compared using Whitney U and Fisher’s exact tests.The dynamic position of SiO was observed within the ventricular system in supine and prone.CT images were visually assessed for SiO migration along the retrolaminar involving pathways for vision(optic nerve,chiasm,and tract)and ventricular system.RESULTS:Intraocular SiO migration was found in 5 of the 29 patients(17.24%),with SiO at the optic nerve head(n=1),optic nerve(n=4),optic chiasm(n=1),optic tract(n=1),and within lateral ventricles(n=1).The time interval between SiO injection and CT examination of migration-positive cases was significantly higher than that of migration-negative patients(22.8±16.5mo vs 13.1±2.6mo,P<0.001).The hyperdense lesion located in the frontal horns of the right lateral ventricle migrated to the fourth ventricle when changing the position from supine to prone.CONCLUSION:Although SiO retrolaminar migration is unusual,the clinician and radiologist should be aware of migration routes.The supine combined with prone examination is the first-choice method to confirm the presence of SiO in the ventricular system.
文摘Background: Silicone oil (SO) has been demonstrated with concrete efficacy and safety in the therapy of complex vitreoretinal diseases. SO is schemed to be cleared within several weeks or months after tamponade, but it’s inevitable for permanent or residual SO in a fraction of patients under extremely complicated clinical conditions. Here, we presented a case of silicone oil removal after 10 years, mainly to observe the disadvantages of long-term persistence. Case presentation: A 69-year-old female with pathologic myopia denied trauma history who had undergone pars plana vitrectomy (PPV), retinal reattachment, laser, and silicone oil tamponade in 2012 presented to our hospital with eye pain and headache, no light perception of her right eye for six months. The slit-lamp biomicroscopy examination for OD indicated evident conjunctival congestion, new blood vessels invasion to the limbus, foggy edema of corneal epithelium, folds of Descemet’s membrane and corneal endothelial edema. There were obvious emulsified silicone oil particles above the anterior chamber. Goldmann’s applanation tonometry test revealed the intraocular pressure was as high as 45/17mmHg. From ocular ultrasound, we saw that the vitreous cavity was filled with silicone oil in right eye;as for the left eye, it showed marked axial elongation and posterior scleral staphyloma. We were unable to obtain more information from fundus photography and macular optical coherence tomography (OCT) due to edema of the cornea. After the silicone oil was removed successfully from her vitreous cavity, although there was no improvement in the patient’s vision (no light perception), she was still satisfied with the relief from eye pain and headache benefited from the reduction of high intraocular pressure (Goldmann’s intraocular pressure decreased to 19/14mmHg). Conclusion: Patients after PPV should remove silicone oil in time to avoid corneal damage, intraocular hypertension, lens opacity and retinal damage induced by long-term silicone tamponade.
基金financial support of the National Nature Science Foundation of China(Grant No.U20B6003)the Natural Science Foundation of Shandong Province,China(ZR2020QE106).
文摘Steam flooding with the assistance of carbon dioxide (CO_(2)) and chemicals is an effective approach for enhancing super heavy oil recovery. However, the promotion and application of CO_(2) and chemical agent-assisted steam flooding technology have been restricted by the current lack of research on the synergistic effect of CO_(2) and chemical agents on enhanced steam flooding heat transfer. The novel experiments on CO_(2)–chemicals cooperate affected steam condensation and seepage were conducted by adding CO_(2) and two chemicals (sodium dodecyl sulfate (SDS) and the betaine temperature-salt resistant foaming agent ZK-05200).According to the experimental findings, a “film” formed on the heat-transfer medium surface following the co-injection of CO_(2) and the chemical to impede the steam heat transfer, reducing the heat transfer efficiency of steam, heat flux and condensation heat transfer coefficient. The steam seepage experiment revealed that the temperature at the back end of the sandpack model was dramatically raised by 3.5–12.8 °C by adding CO_(2) and chemical agents, achieving the goal of driving deep-formation heavy oil. The combined effect of CO_(2) and SDS was the most effective for improving steam heat transfer, the steam heat loss was reduced by 6.2%, the steam condensation cycle was prolonged by 1.3 times, the condensation heat transfer coefficient was decreased by 15.5%, and the heavy oil recovery was enhanced by 9.82%. Theoretical recommendations are offered in this study for improving the CO_(2)–chemical-assisted steam flooding technique.
基金support from the National Natural Science Foundation of China(52174034)the Sichuan Science and Technology Program(2021YFH0081).
文摘Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and possible potential for heavy oil reservoirs.However,the addition of polymer may cause problems with injection in the case of highly viscous oil.Hence,in this study the feasibility of alkali-cosolvent(AC)flooding in heavy oil reservoirs was investigated via several groups of experiments.The interfacial tension between various AC formulations and heavy crude oil was measured to select appropriate formulations.Phase behavior tests were performed to determine the most appropriate formulation and conditions for the generation of a microemulsion.Sandpack flooding experiments were carried out to investigate the displacement efficiency of the selected Ac formulation.The results showed that the interfacial tension between an AC formulation and heavy oil could be reduced to below 1o-3 mN/m but differed greatly between different types of cosolvent.A butanol random polyether series displayed good performance in reducing the water-oil interfacial tension,which made it possible to form a Type Il microemulsion in reservoir conditions.According to the results of the phase behavior tests,the optimal salinity for different formulations with four cosolvent concentrations(0.5 wt%,1 wt%,2 wt%,and 3 wt%)was 4000,8000,14000,and 20000 ppm,respectively.The results of rheological measurements showed that Type Ill microemulsion had a viscosity that was ten times that of water.The results of sandpack flooding experiments showed that,in comparison with waterflooding,the injection of a certain Ac formulation slug could reduce the injection pressure.The pressure gradient during waterflooding and AC flooding was around 870 and 30-57 kPa/m,respectively.With the addition of an AC slug,the displacement efficiency was 30%-50%higher than in the case of waterflooding.
基金supported by NSFC(41930425)Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ008)+1 种基金R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications(2022DQ0604-01)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)and NSFC(42274142).
文摘Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results for seismic inversion of heavy oil reservoir. To describe the viscoelastic behavior of heavy oil, we modeled the elastic properties of heavy oil with varying viscosity and frequency using the Cole-Cole-Maxwell (CCM) model. Then, we used a CCoherent Potential Approximation (CPA) instead of the Gassmann equations to account for the fluid effect, by extending the single-phase fluid condition to two-phase fluid (heavy oil and water) condition, so that partial saturation of heavy oil can be considered. This rock physics model establishes the relationship between the elastic modulus of reservoir rock and viscosity, frequency and saturation. The viscosity of the heavy oil and the elastic moduli and porosity of typical reservoir rock samples were measured in laboratory, which were used for calibration of the rock physics model. The well-calibrated frequency-variant CPA model was applied to the prediction of the P- and S-wave velocities in the seismic frequency range (1–100 Hz) and the inversion of petrophysical parameters for a heavy oil reservoir. The pre-stack inversion results of elastic parameters are improved compared with those results using the CPA model in the sonic logging frequency (∼10 kHz), or conventional rock physics model such as the Xu-Payne model. In addition, the inversion of the porosity of the reservoir was conducted with the simulated annealing method, and the result fits reasonably well with the logging curve and depicts the location of the heavy oil reservoir on the time slice. The application of the laboratory-calibrated CPA model provides better results with the velocity dispersion correction, suggesting the important role of accurate frequency dependent rock physics models in the seismic prediction of heavy oil reservoirs.
基金supported by the National Key R&D Program of China(2018YFA0702400)Science Foundation of China University of Petroleum,Beijing(ZX20210029).
文摘Most heavy crude oils underwent biodegradation and generated a significant amount of naphthenic acids. Naphthenic acids are polar compounds with the carboxylic group and are considered as a major factor affecting the oil viscosity. However, the relationship between the molecular composition of naphthenic acids and oil viscosity is not well understood. This study examined a “clean” heavy oil with low contents of heteroatoms but had a high content of naphthenic acids. Naphthenic acids were fractionated by distillation and caustic extraction. The molecular composition was characterized by high-resolution Orbitrap mass spectrometry. It was found that the 2- and 3-ring naphthenic monoacids with 15–35 carbon atoms are dominant components of the acid fractions;the caustic extraction is capable of isolating naphthenic acids with less than 35 carbons, which is equivalent to the upper limit of the distillable components, but not those in the residue fraction;the total acid number of the heavy distillates is higher than that of the residue fraction;the viscosity of the distillation fraction increases exponentially with an increased boiling point of the distillates. Blending experiments indicates that there is a strong correlation between the oil viscosity and acids content, although the acid content is only a few percent of the total oil.