期刊文献+
共找到1,484篇文章
< 1 2 75 >
每页显示 20 50 100
Preparation and release of curcumin/silk fibroin/sodium alginate film
1
作者 Yerong Yuan Jun’an Zheng +3 位作者 Zunchao Liu Wei Li Jiaqing Cao Xiangrong Zhang 《Journal of Polyphenols》 2024年第1期1-10,共10页
The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength a... The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength and elongation at break.The release of curcumin in the optimal film was studied in order to explore its application as wound dressing.The results showed that the optimum composition of curcumin/silk fibroin/sodium alginate composite film was as follows:Silk fibroin(70 mg/mL)2.7 g,sodium alginate(24 mg/mL)0.84 g,span 40(5.0 mg/mL)0.4 g,glycerol(3.75%,V/V)3 mL,curcumin(0.2 mg/mL)0.016 g.The optimum film showed the tensile strength and the elongation at break was(0.628±0.032)MPa and(0.794±0.046)%,respectively. 展开更多
关键词 CURCUMIN silk fibroin sodium alginate composite film
下载PDF
A Review on Silk Fibroin as a Biomaterial in Tissue Engineering
2
作者 Tkhu Chang Le Qian Zhang +3 位作者 Qingdi Qu Wentong Ding Sergej Anatolyevich Lazarev Shuang Pan 《Journal of Biosciences and Medicines》 2024年第3期275-290,共16页
Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replace... Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replaced organ after their implantation into the body. The tissue engineering material must meet a range of requirements, including biocompatibility, mechanical strength, and elasticity. Furthermore, the materials have to be attractive for cell growth: stimulate cell adhesion, migration, proliferation and differentiation. One of the natural biomaterials is silk and its component (silk fibroin). An increasing number of scientists in the world are studying silk and silk fibroin. The purpose of this review article is to provide information about the properties of natural silk (silk fibroin), as well as its manufacture and clinical application of each configuration of silk fibroin in medicine. Materials and research methods. Actual publications of foreign authors on resources PubMed, Medline, E-library have been analyzed. The selection criteria were materials containing information about the structure and components of silk, methods of its production in nature. This article placed strong emphasis on silk fibroin, the ways of artificial modification of it for use in various sphere of medicine. 展开更多
关键词 Tissue Engineering Biomaterial SCAFFOLD silk fibroin
下载PDF
Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury 被引量:7
3
作者 Ting-gang Wang Jie Xu +5 位作者 Ai-hua Zhu Hua Lu Zong-ning Miao Peng Zhao Guo-zhen Hui Wei-jiang Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1670-1677,共8页
Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial... Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithe- lial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the trans- plant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial ceils combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells. 展开更多
关键词 nerve regeneration spinal cord injury amniotic epithelial cells silk fibroin SCAFFOLD TRANSPLANTATION glial scar MICROENVIRONMENT immunological reaction REJECTION neural regeneration
下载PDF
Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair 被引量:7
4
作者 Ya-Hong Zhao Chang-Mei Niu +3 位作者 Jia-Qi Shi Ying-Yu Wang Yu-Min Yang Hong-Bo Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第8期1455-1464,共10页
Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However,... Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However, it remains challenging to prepare biomaterials with micro-nanostructures that accurately mimic the nanostructural features of natural tissues. A novel nanotechnological tool, electrospinning, permits the processing and modification of proper nanoscale biomaterials to enhance neural cell adhesion, migration, proliferation, differentiation, and subsequent nerve regeneration. The composite scaffold was prepared by combining 3D bioprinting with subsequent electrochemical deposition of polypyrrole and electrospinning of silk fibroin to form a composite polypyrrole/silk fibroin scaffold. Fourier transform infrared spectroscopy was used to analyze scaffold composition. The surface morphology of the scaffold was observed by light microscopy and scanning electron microscopy. A digital multimeter was used to measure the resistivity of prepared scaffolds. Light microscopy was applied to observe the surface morphology of scaffolds immersed in water or Dulbecco's Modified Eagle's Medium at 37℃ for 30 days to assess stability. Results showed characteristic peaks of polypyrrole and silk fibroin in the synthesized conductive polypyrrole/silk fibroin scaffold, as well as the structure of the electrospun nanofiber layer on the surface. The electrical conductivity was 1 × 10^-5–1 × 10^-3 S/cm, while stability was 66.67%. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was employed to measure scaffold cytotoxicity in vitro. Fluorescence microscopy was used to observe Ed U-labeled Schwann cells to quantify cell proliferation. Immunohistochemistry was utilized to detect S100β immunoreactivity, while scanning electron microscopy was applied to observe the morphology of adherent Schwann cells. Results demonstrated that the polypyrrole/silk fibroin scaffold was not cytotoxic and did not affect Schwann cell proliferation. Moreover, filopodia formed on the scaffold and Schwann cells were regularly arranged. Our findings verified that the composite polypyrrole/silk fibroin scaffold has good biocompatibility and may be a suitable material for neural tissue engineering. 展开更多
关键词 nerve regeneration composite nanofiber SCAFFOLD three dimensional bioprinting ELECTROSPINNING silk fibroin POLYPYRROLE L929 cells conductivity Schwann cells BIOCOMPATIBILITY nerve repair neural regeneration
下载PDF
SURFACE MODIFICATION OF BLEND FILMS COMPOSED OF SILK FIBROIN AND POLY(ETHYLENE GLYCOL) MACROMER AND THEIR IN VITRO ANTITHROMBOGENICITY 被引量:4
5
作者 王松 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2004年第4期399-403,共5页
In order to improve the blood compatibility of silk fibroin (SF), poly(ethylene glycol) macromer (PEGM) in different amounts was added to the SF film to incorporate C=C group into the surface of blend films which were... In order to improve the blood compatibility of silk fibroin (SF), poly(ethylene glycol) macromer (PEGM) in different amounts was added to the SF film to incorporate C=C group into the surface of blend films which were then modified by SO2 gas plasma treatment. ATR-FITR and XPS were used to analyze the chemical change which had occurred on the film's surface. When the content of sulfur on the surface of blend films surpasses 1.59%, the antithrombogenicity of plasma treated films increases remarkably due to surface sulfonation. This result implies that SF with blend of PEGM after SO2 plasma treatment have potential use for making blood-contacting biomaterials. 展开更多
关键词 silk fibroin Poly(ethylene glycol) macromer PLASMA ANTITHROMBOGENICITY
下载PDF
Preparation and Characterization of PEGDE Crosslinked Silk Fibroin Film 被引量:3
6
作者 魏雅丽 SUN Dan +2 位作者 YI Honggen ZHAO Huanrong 王建南 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第5期1083-1089,共7页
To obtain water-insoluble silk fibroin (SF) materials, polyethylene glycol diglycidyl ether (PEG-DE) was selected as a crosslinking agent to prepare SF films (blends). The reaction conditions were optimized for ... To obtain water-insoluble silk fibroin (SF) materials, polyethylene glycol diglycidyl ether (PEG-DE) was selected as a crosslinking agent to prepare SF films (blends). The reaction conditions were optimized for the crosslinking of the SF molecules. The hot water stability of the blends was measured using BCA protein assay and gravimetric analysis. The molecular conformation and crystalline structure of the blends were analyzed by FTIR and XRD, respectively. When the mass ratio of SF:PEG-DE was 1.0:0.8, the hot water loss rate of the SF blends was minimized. PEG-DE could induce SF molecules to form fl-sheets during the gel reaction process, resulting in improved crystallinity and hot water dissolved resistance of the blend films. In order to demonstrate the eytotoxicity of the chemical reagents used to crosslink SF, L929 cells were seeded on the blend film (SF:PEG-DE = 1:1) and cultured for 3 days. Cells of L929 readily adhered and spread in the fusiform on the blend film resulting in high cell viability. The extracted liquid from the SF porous film did not inhibit cell proliferation, as estimated by the MTT assay. 展开更多
关键词 silkWORM silk fibroin PEG-DE FTIR XRD cell compatibility
下载PDF
Exploration of the enhanced performances for silk fibroin/sodium alginate composite coatings on biodegradable Mg-Zn-Ca alloy 被引量:3
7
作者 Hui Fang Chenxi Wang +3 位作者 Shicheng Zhou Ge Li Yanhong Tian Tadatomo Suga 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1594-1610,共17页
To expand the future clinic applications of biodegradable magnesium alloy,polymer coatings with excellent biocompatibility are the keys to solve the local alkalinity and rapid hydrogen release.Natural-organic silk fib... To expand the future clinic applications of biodegradable magnesium alloy,polymer coatings with excellent biocompatibility are the keys to solve the local alkalinity and rapid hydrogen release.Natural-organic silk fibroin provides an approach to fabricate a protective coating on biomedical Mg-Zn-Ca alloy,however,the adhesion force and mechanical properties of the coating on substrates are ought to be further improved without any chemical conversion/intermediate layer.Hereby,based on VUV/O;surface activation,a hybrid of silk fibroin and sodium alginate is proposed to enhance the adhesion force and mechanical properties of the composite coatings on hydrophilic Mg-Zn-Ca alloy surfaces.Various mass ratios of sodium alginate addition were investigated to achieve the optimum coating strategy.The nanoscratch test and nanoindentation test confirmed that the adhesion force was tripled and mechanical properties index was significantly improved when the mass ratio of silk fibroin/sodium alginate was 70/30 compared to pure silk fibroin or sodium alginate coatings.Meanwhile,the corrosion rate of the coated Mg-Zn-Ca alloy was significantly delayed with the addition of sodium alginate,resulting in a reaction layer during corrosion process.Furthermore,the mechanisms for both adhesion and corrosion processes were discussed in detail.Our findings offer more possibilities for the controllable surface performance of degradable metals. 展开更多
关键词 Mg-Zn-Ca alloy silk fibroin Sodium alginate Adhesion force Mechanical property Corrosion resistance
下载PDF
Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation 被引量:2
8
作者 Aijun Hu Baoqi Zuo +2 位作者 Feng Zhang Qing Lan Huanxiang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第15期1171-1178,共8页
In this study, Schwann cells, at a density of 1 x 105 cells/well, were cultured on regenerated silk fibroin nanofibers (305 + 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fib... In this study, Schwann cells, at a density of 1 x 105 cells/well, were cultured on regenerated silk fibroin nanofibers (305 + 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fibroin nanofibers appeared more ordered, their processes extended further, and they formed more extensive and complex interconnections. In addition, the silk fibroin nanofibers had no impact on the proliferation of Schwann cells or on the secretion of ciliary neurotrophic factor, brain-derived neurotrophic factor or nerve growth factor. These findings indicate that regenerated electrospun silk fibroin nanofibers can promote Schwann cell adhesion, growth and proliferation, and have excellent biocompatibility. 展开更多
关键词 peripheral nerve regeneration nerve tissue engineering Schwann cells silk fibroin ELECTROSPINNING neural regeneration
下载PDF
Mesoporous Bioglass/Silk Fibroin Scaffolds as a Drug Delivery System: Fabrication, Drug Loading and Release in vitro and Repair Calvarial Defects in vivo 被引量:2
9
作者 张晓欣 ZHANG Jiayin 施斌 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第2期401-406,共6页
The potential of combining bioactive glass(MBG) and silk fibroin(SF) together as a new drug delivery system was evaluated. The three-dimensional porous scaffolds were selected as the form of SF, and sol-gel method... The potential of combining bioactive glass(MBG) and silk fibroin(SF) together as a new drug delivery system was evaluated. The three-dimensional porous scaffolds were selected as the form of SF, and sol-gel method was adopted to fabricate MBG in this study. The characteristic of the synthesized material was measured by transmission electron microscopy and scanning electron microscopy. In vitro evaluation of drug delivery was carried out in terms of drug loading and drug release. And aspirin was chosen as the drug for scaffolds to carry out in vitro tests and repair BALB/C mice calvarial defects. Bone formation was examined by microcomputed tomography. The experimental results show that MBG/silk scaffolds have better physiochemical properties compared with silk scaffolds. In comparison to pure silk scaffolds, MBG/silk scaffolds enhance the drug loading efficiency, release rate in vitro and promote bone regeneration in vivo. Thus we conclude that MBG/silk scaffold is a more efficient drug delivery system than pure silk scaffolds. 展开更多
关键词 silk fibroin mesoporous bioactive glass drug delivery calvarial defect ASPIRIN
下载PDF
Designing and Cloning of the Gene Sequence Encoding Silk Fibroin Amorphous Domain 被引量:2
10
作者 黄海燕 田智芳 +2 位作者 裔洪根 杨云星 王建南 《Journal of Donghua University(English Edition)》 EI CAS 2012年第6期489-492,共4页
To provide materials used in investigating the relationship between amino acid compositions of silk-like protein, structure, and functions, especially the biological functions, the motif genes encoding the silk fibroi... To provide materials used in investigating the relationship between amino acid compositions of silk-like protein, structure, and functions, especially the biological functions, the motif genes encoding the silk fibroin amorphous domain, SGFGPVANGGSGEASSESDFGSSGFGPVANASSGEASSESDFAG(F) were designed and extended using a "head-to-tail" construction strategy. The designed genes were cloned into PSLFA1180FA and multimerized to form structures containing a two-timer, a four-timer, an eight-timer, and a twelve-timer. All the resulting plasmids were digested using the restriction enzyme BamHI and the double-enzymes BglII/HindIII. Restriction enzyme analysis and DNA sequencing revealed the motif was successfully cloned into PSLFA1180FA and multimerized to form a twelve-timer without gene deletion or mutation. 展开更多
关键词 Escherichia coli silk fibroin amorphous domain gene cloning DNA electrophoresis
下载PDF
Structure Changes of Silk Fibroin(SF) by Blending with Poly(ε-caprolactone)(PCL):Characterization of SF and PCL Blended Electrospinning Films 被引量:2
11
作者 赵荟菁 李鹏举 +2 位作者 尤人传 刘桂阳 李明忠 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期368-374,共7页
The mechanical properties and water solubility of electrospinning SF films limit their use as biomaterials. In order to develop a tissue engineering biomaterial with both satisfying biological properties and sufficien... The mechanical properties and water solubility of electrospinning SF films limit their use as biomaterials. In order to develop a tissue engineering biomaterial with both satisfying biological properties and sufficient biomechanical properties,blended films composed of silk fibroin( SF) and poly( ε-caprolactone)( PCL) were fabricated by electrospinning in this study. Scanning electron microscope( SEM), X-ray diffraction( XRD),thermal analysis,Fourier transform-infrared( FT-IR),Raman spectra,mechanical testing,and water solubility were used to characterize the morphological, structural and mechanical properties of the blended electrospinning films. Results showed that the diameter of the blended fiber was distributed between 600 and1000 nm,and the fiber diameter increased as the PCL content increased. There is no obvious phase separation due to the similarity and intermiscibility,as well as the interactions( mainly hydrogen bonds), between the two polymers. Meanwhile, the secondary structures of SF changed from random coils and Silk I to Silk II because of the interactions between SF and PCL. For this reason,the tensile strength and elongation at break of the electrospinning films improved significantly,and the water solubility decreased. In conclusion,the blended electrospinning films fabricated in this study showed satisfying mechanical properties and water insolubilities,and they may be promising biomaterials for applications in tissue engineering for blood vessels,nerve conduits,tendons,ligaments and other tissues. 展开更多
关键词 silk fibroin(SF) poly(ε-caprolactone)(PCL) BLENDING ELECTROSPINNING secondary structure
下载PDF
Electrospun and woven silk fibroin/poly(lactic-coglycolic acid) nerve guidance conduits for repairing peripheral nerve injury 被引量:6
12
作者 Ya-ling Wang Xiao-mei Gu +2 位作者 Yan Kong Qi-lin Feng Yu-min Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1635-1642,共8页
We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-... We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-NGCs were assessed in order to evaluate their biocompatibility. The physical properties, including thickness, tensile stiffness, infrared spectroscopy, porosity, and water absorption were determined in vitro. To assess the biological properties, Schwann cells were cultured in ESP-NGC extracts and were assessed by morphological observation, the MTT assay, and immunohistochemistry. In addition, ESP-NGCs were subcutaneously implanted in the backs of rabbits to evaluate their biocompatibility in vivo. The results showed that ESP-NGCs have high porosity, strong hydrophilicity, and strong tensile stiffness. Schwann cells cultured in the ESP-NGC extract fluids showed no significant differences compared to control cells in their morphology or viability. Histological evaluation of the ESP-NGCs implanted in vivo indicated a mild inflammatory reaction and high biocompatibility. Together, these data suggest that these novel ESP-NGCs are biocompatible, and may thus provide a reliable scaffold for peripheral nerve repair in clinical application. 展开更多
关键词 nerve regeneration peripheral nerve injury poly(lactic-co-glycolic acid) electrospinning silk fibroin biocompatibility nerve guidance conduit weaving
下载PDF
High performance pentacene organic field-effect transistors consisting of biocompatible PMMA/silk fibroin bilayer dielectric 被引量:1
13
作者 李海强 于军胜 +2 位作者 黄伟 施薇 黄江 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期636-639,共4页
Pentacene organic field-effect transistors (OFETs) based on single- or double-layer biocompatible dielectrics of poly(methyl methacrylate) (PMMA) and/or silk fibroin (SF) are fabricated. Compared with those de... Pentacene organic field-effect transistors (OFETs) based on single- or double-layer biocompatible dielectrics of poly(methyl methacrylate) (PMMA) and/or silk fibroin (SF) are fabricated. Compared with those devices based on sin- gle PMMA or SF dielectric or SF/PMMA bilayer dielectric, the OFETs with biocompatible PMMA/SF bilayer dielectric exhibit optimal performance with a high field-effect mobility of 0.21 cm2/Vs and a current on/off ratio of 1.5 × 104. By investigating the surface morphology of the pentacene active layer through atom force microscopy and analyzing the elec- trical properties, the performance enhancement is mainly attributed to the crystallization improvement of the pentacene and the smaller interface trap density at the dielectric/organic interface. Meanwhile, a low contact resistance also indicates that a good electrode/organic contact is formed, thereby assisting the performance improvement of the OFET. 展开更多
关键词 organic filed-effect transistors (OFETs) poly(methyl methacrylate) silk fibroin bilayer dielectric
下载PDF
Silk Fibroin-Based Hydrogel for Multifunctional Wearable Sensors 被引量:1
14
作者 Yiming Zhao Hongsheng Zhao +5 位作者 Zhili Wei Jie Yuan Jie Jian Fankai Kong Haojiang Xie Xingliang Xiong 《Journal of Renewable Materials》 SCIE EI 2022年第11期2729-2746,共18页
The flexible wearable sensors with excellent stretchability,high sensitivity and good biocompatibility are significantly required for continuously physical condition tracking in health management and rehabilitation mo... The flexible wearable sensors with excellent stretchability,high sensitivity and good biocompatibility are significantly required for continuously physical condition tracking in health management and rehabilitation monitoring.Herein,we present a high-performance wearable sensor.The sensor is prepared with nanocomposite hydrogel by using silk fibroin(SF),polyacrylamide(PAM),polydopamine(PDA)and graphene oxide(GO).It can be used to monitor body motions(including large-scale and small-scale motions)as well as human electrophysiological(ECG)signals with high sensitivity,wide sensing range,and fast response time.Therefore,the proposed sensor is promising in the fields of rehabilitation,motion monitoring and disease diagnosis. 展开更多
关键词 Acrylic amide silk fibroin graphene oxide wearable sensor flexible strain sensor
下载PDF
Preparation and Characterization of Silk Fibroin Aerogel 被引量:1
15
作者 吴峰 殷祝平 +2 位作者 陈伊蕾 仇卢琦 卢神州 《Journal of Donghua University(English Edition)》 EI CAS 2018年第1期13-17,共5页
Silk protein fibroin,as a biomedical material,has good biocompatibility,biodegradability,regulation and excellent physical and chemical properties. In this work,a low density porous silk fibroin material is prepared f... Silk protein fibroin,as a biomedical material,has good biocompatibility,biodegradability,regulation and excellent physical and chemical properties. In this work,a low density porous silk fibroin material is prepared from fibroin solution by high-speed shearing with impeller. By adjusting shear rate of the stirrer,silk fibroin aerogel with different sizes of the aperture is prepared. In general, this aerogel has small porosity, uniform pores, good mechanical properties and slow rate of degradation. It is observed that increasing the shear rate results in higher porosity of aerogel,while the diameter of the aerogel becomes smaller. This silk aerogel may offer a new option as biomaterial for the tissue engineering application based on the information on the structural behaviors. 展开更多
关键词 silk fibroin shear stress AEROGEL porous materials
下载PDF
Research and Application Progress of Silk Fibroin Membranes 被引量:1
16
作者 Chan ZHOU Jinfeng LU +3 位作者 Jieping WANG Yao ZENG Qunzhong MA Shanlin GU 《Asian Agricultural Research》 2021年第12期43-48,共6页
This paper mainly introduced the preparation of silk fibroin membranes and their structural change characteristics.Silk fibroin membranes can be used as tissue engineering materials,enzyme-immobilizing membranes,biose... This paper mainly introduced the preparation of silk fibroin membranes and their structural change characteristics.Silk fibroin membranes can be used as tissue engineering materials,enzyme-immobilizing membranes,biosensors and drug controlled-release membranes and other different materials.They have excellent characteristics such as non-toxic,non-polluting and degradable,and thus have broad application prospects. 展开更多
关键词 silk fibroin membrane Tissue engineering BIOSENSOR Polymer blend membrane Immobilized enzyme carrier Controlled release
下载PDF
Surface Modification of Silk Fibroin Films with Zwitterionic Phosphobetaine to Improve the Hemocompatibility
17
作者 蒋雪峰 陈强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第6期969-974,共6页
Zwitterionic phosphobetaine bearing a hydroxyl and a zwitterionic group,8-hydroxy-2-octyl phosphorylcholine(HOPC),was synthesized and constructed to the surface of silk fibroin(SF) films in order to improve the he... Zwitterionic phosphobetaine bearing a hydroxyl and a zwitterionic group,8-hydroxy-2-octyl phosphorylcholine(HOPC),was synthesized and constructed to the surface of silk fibroin(SF) films in order to improve the hemocompatibility of fibroin films by a an isocyanate head group.The surface characteristics of the modified films were measured by attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR) and electron spectroscopy for chemical analysis(ESCA),displaying the successful immobilization of Zwitterionic phosphobetaine on the surface of these fibroin films.Moreover,the further platelet adhesion test in platelets rich plasma(PRP) of human beings showed the zwitterionic phosphobetaine led mainly to good nonthrombogenicity.The experimental results indicated a reasonable approach to improve the blood compatibility of fibroin films. 展开更多
关键词 ZWITTERIONIC phosphobetaine silk fibroin blood compatibility platelet adhesion
下载PDF
PROPERTIES OF SILK FIBROIN/POLY(ETHYLENE GLYCOL)400 BLEND FILMS
18
作者 王松 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第1期87-91,共5页
The blend film of silk fibroin (SF) and poly(ethylene glycol)400 (PEG400) with a blend ratio of 2/1 (wt/wt) wasprepared simply by dropping a little PEG400 into the SF solution and then casting the mixed aqueous soluti... The blend film of silk fibroin (SF) and poly(ethylene glycol)400 (PEG400) with a blend ratio of 2/1 (wt/wt) wasprepared simply by dropping a little PEG400 into the SF solution and then casting the mixed aqueous solution at 50℃. Theresulting film exhibited much better mechanical properties in the dry and wet state than SF itself, owing to theconformational change of SF in the blends from the random coil to the β-sheet structure and intermolecular hydrogen bondformation between SF and PEG400. Thermogravimetric analysis showed that the initial thermal decomposition temperatureof the blend film was 170℃, which was 80℃ lower than that of SF (250℃) and 20℃ higher than that of PEG400 (150℃),and indicated a Strong interaction between two components of the blend. No crystalline peaks were observed in the X-raydiffraction curve of the blend film. Cell culture test showed that SF/PEG400 was a suitable substrate for the growth of humanumbilical vein endothelial cells (HUVEC). 展开更多
关键词 silk fibroin Poly(ethylene glycol)400 Blend film Cell culture
下载PDF
Preparation and Characterization of Nano-Se/Silk Fibroin Colloids
19
作者 HOU Ju-ying AI Shi-yun SHI Wei-jie 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第1期158-160,共3页
A solution-phase approach to the synthesis of nano-Se/silk fibroin colloids(NSeSFC) by reducing selenious acid solution with silk fibroin(SF) was proposed, and the composites were in situ prepared by macrowave met... A solution-phase approach to the synthesis of nano-Se/silk fibroin colloids(NSeSFC) by reducing selenious acid solution with silk fibroin(SF) was proposed, and the composites were in situ prepared by macrowave method. The nanocomposites were characterized with ultraviolet-visible(UV-Vis) absorption spectrometry, resonance Rayleigh scattering(RRS) spectrometry and transmission electron microscopy(TEM). The nano-Se(0) solution exhibited the strongest resonance Rayleigh scattering at 579 rim. Through the RRS discussion, we found the best preparation and conservation condition of NSeSFC. The TEM image shows the sizes of the Se(0) particles were about 50 nm and dispersed equably. The resulted NSeSFC exhibited good stability, and it can be kept for a long period. 展开更多
关键词 silk fibroin Red selenium nanoparticle Resonance Rayleigh scattering Transmission electron microscopy
下载PDF
Silk Fibroin Film Blended with Poly( ethylene glycol-glycerin)
20
作者 李姣姣 张珊珊 +2 位作者 邢铁玲 李明忠 卢神州 《Journal of Donghua University(English Edition)》 EI CAS 2014年第4期507-510,共4页
To improve the toughness of silk fibroin( SF) films,poly( ethylene glycol-glycerin)( PEGG) was synthesized with ethylene glycol and epichlorohydrin. The SF / PEGG blend films were prepared by casting aqueous solution ... To improve the toughness of silk fibroin( SF) films,poly( ethylene glycol-glycerin)( PEGG) was synthesized with ethylene glycol and epichlorohydrin. The SF / PEGG blend films were prepared by casting aqueous solution and their structures were characterized. The PEGG was in liquid state at room temperature so it will not be a single phrase at blend film. It crosslinked with SF and made it insolubility in water. The results of X-ray diffraction( XRD) indicated that the crystallinity of the SF in the blend films decreased with the content of PEGG increasing. The tensile strength and elongation at break of blend films were measured using an instron tensile tester. The results showed that the tensile strength and elongation at break of blend films were high enough for application.After the blend films were stored at room temperature for 100 d,the crystallinity, the tensile strength and elongation at wet state increased. The blend films are superior to SF films in providing excellent flexibility and mechanical properties in both dry and wet states. Based on the fact that SF has good biocompatibility,the SF /PEGG blend film will offer new options in many different biomedical applications. 展开更多
关键词 silk fibroin(SF) structure mechanical properties BIOMATERIALS FILMS
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部