Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing ...Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing waves or currents in the ocean. By analyzing the domestic and international norms, this study <span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">pre</span><span style="font-family:Verdana;font-size:12px;">sents a review of calculation methods of wind load on ocean platforms, which </span><span style="letter-spacing:-0.15pt;font-family:Verdana;font-size:12px;">belongs to large-scale non-entity structure used in the open sea while sur</span><span style="font-family:Verdana;font-size:12px;">round</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ing wind has no fixed direction. Current computations according to the</span><span style="font-family:Verdana;font-size:12px;"> norms are not accurate, which even not takes the force of the wind against the surf</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ace perpendicular to the structure into consideration. Additionally, thi</span><span style="font-family:Verdana;font-size:12px;">s study also introduces and compares the lift model of platforms based on different </span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">theories, such as vortex-excitation and vibration, engineering structure dy</span><span style="font-family:Verdana;font-size:12px;">namics, gas flow pressure theory, analyzing their applicability, advantages, and disadvantages. This paper analyzes the limitations and applicable conditions of the existing calculation method itself, such as the lift model is suitable for the existence of stable vortex wake;the calculation method of the structural dynamics of marine engineering must be combined with the wind tunnel test and consider the mistakes caused by the position relationship;the numerical simulation method is accurate but tedious. This study provides an insight into the calculation methods of lift in designing ocean platforms, including the </span><span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">finite element method for simulating fluid force and updating formulas in</span><span style="font-family:Verdana;font-size:12px;"> Chinese norms.</span>展开更多
There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly aff...There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.展开更多
Identifying thermal bridges on building façades has been a great challenge for architects,especially during the conceptual design stage.This is not only due to the complexity of parameters when calculating therma...Identifying thermal bridges on building façades has been a great challenge for architects,especially during the conceptual design stage.This is not only due to the complexity of parameters when calculating thermal bridges,but also lack of feature integration between building energy simulation(BES)tools and the actual building conditions.For example,existing BES tools predominantly calculate thermal bridges only in steady state without considering the temperature dynamic behaviour of building outdoors.Consequently,relevant features such as thermal delay,decrement factor,and operative temperature are often neglected,and this can lead to miscalculation of energy consumption.This study then proposes an integrated method to calculate dynamic thermal bridges under transient conditions by incorporating field observations and computational simulations of thermal bridges.More specifically,the proposed method employs several measurement tools such as HOBO data logger to record the actual conditions of indoor and outdoor room temperature and thermal cameras to identify the surface temperature of selected building junctions.The actual datasets are then integrated with the simulation workflow developed in BES tools.This study ultimately enables architects not only to identify potential thermal bridges on existing building façades but also to support material and geometric exploration in early design phase.展开更多
Usually, the action of sea ice on offshore engineering structures is one of the controlling loads in cold waters engineering structure design. The reasonable selection of environmental condition and the physical mecha...Usually, the action of sea ice on offshore engineering structures is one of the controlling loads in cold waters engineering structure design. The reasonable selection of environmental condition and the physical mechanical properties of ice in the region are directly related to the structure design, operation and safety. In this paper, the sea ice force acting on the structure, the physical mechanical properties of ice and the selection of parameters in calculation are discussed. Some suggestions are proposed as to the calculation of various kinds of ice loads acting on the structure.展开更多
文摘Wind load is a control load that affects the safety of structures in the design of ocean platforms. It has not only direct and powerful effects that may cause structure resonance but also has indirect effects causing waves or currents in the ocean. By analyzing the domestic and international norms, this study <span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">pre</span><span style="font-family:Verdana;font-size:12px;">sents a review of calculation methods of wind load on ocean platforms, which </span><span style="letter-spacing:-0.15pt;font-family:Verdana;font-size:12px;">belongs to large-scale non-entity structure used in the open sea while sur</span><span style="font-family:Verdana;font-size:12px;">round</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ing wind has no fixed direction. Current computations according to the</span><span style="font-family:Verdana;font-size:12px;"> norms are not accurate, which even not takes the force of the wind against the surf</span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">ace perpendicular to the structure into consideration. Additionally, thi</span><span style="font-family:Verdana;font-size:12px;">s study also introduces and compares the lift model of platforms based on different </span><span style="letter-spacing:-0.1pt;font-family:Verdana;font-size:12px;">theories, such as vortex-excitation and vibration, engineering structure dy</span><span style="font-family:Verdana;font-size:12px;">namics, gas flow pressure theory, analyzing their applicability, advantages, and disadvantages. This paper analyzes the limitations and applicable conditions of the existing calculation method itself, such as the lift model is suitable for the existence of stable vortex wake;the calculation method of the structural dynamics of marine engineering must be combined with the wind tunnel test and consider the mistakes caused by the position relationship;the numerical simulation method is accurate but tedious. This study provides an insight into the calculation methods of lift in designing ocean platforms, including the </span><span style="letter-spacing:0.1pt;font-family:Verdana;font-size:12px;">finite element method for simulating fluid force and updating formulas in</span><span style="font-family:Verdana;font-size:12px;"> Chinese norms.</span>
基金financially supported by the Major Science and Technology Project of MOT,China(Grant Nos.2013 328 224 070 and 2014 328 224 040)the National Natural Science Foundation of China(Grant No.51409134)
文摘There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.
基金This research is funded by Directorate of Research and Development,Universitas Indonesia under Hibah PUTI Q1 Batch 22022(NKB-1149/UN2.RST/HKP.05.00/2022)awarded to Dr.Miktha Farid Alkadri S.Ars.,M.Ars.We also thank to Dr.Eng.Arnas,ST.,M.T.,from the Department of Mechanical Engineering,Universitas Indonesia,who has provided valuable input during the research process and HTflux team who has supplied a license for thermal bridge simulation.
文摘Identifying thermal bridges on building façades has been a great challenge for architects,especially during the conceptual design stage.This is not only due to the complexity of parameters when calculating thermal bridges,but also lack of feature integration between building energy simulation(BES)tools and the actual building conditions.For example,existing BES tools predominantly calculate thermal bridges only in steady state without considering the temperature dynamic behaviour of building outdoors.Consequently,relevant features such as thermal delay,decrement factor,and operative temperature are often neglected,and this can lead to miscalculation of energy consumption.This study then proposes an integrated method to calculate dynamic thermal bridges under transient conditions by incorporating field observations and computational simulations of thermal bridges.More specifically,the proposed method employs several measurement tools such as HOBO data logger to record the actual conditions of indoor and outdoor room temperature and thermal cameras to identify the surface temperature of selected building junctions.The actual datasets are then integrated with the simulation workflow developed in BES tools.This study ultimately enables architects not only to identify potential thermal bridges on existing building façades but also to support material and geometric exploration in early design phase.
文摘Usually, the action of sea ice on offshore engineering structures is one of the controlling loads in cold waters engineering structure design. The reasonable selection of environmental condition and the physical mechanical properties of ice in the region are directly related to the structure design, operation and safety. In this paper, the sea ice force acting on the structure, the physical mechanical properties of ice and the selection of parameters in calculation are discussed. Some suggestions are proposed as to the calculation of various kinds of ice loads acting on the structure.