Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productiv...Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productivity of the hot rolling process.In addition,the RUL prediction for rollers is helpful in transitioning from the current regular maintenance strategy to conditional-based maintenance.Therefore,a new method that can extract coarse-grained and fine-grained features from batch data to predict the RUL of the rollers is proposed in this paper.Firstly,a new deep learning network architecture based on recurrent neural networks that can make full use of the extracted coarsegrained fine-grained features to estimate the heath indicator(HI)is developed,where the HI is able to indicate the health state of the roller.Following that,a state-space model is constructed to describe the HI,and the probabilistic distribution of RUL can be estimated by extrapolating the HI degradation model to a predefined failure threshold.Finally,application to a hot strip mill is given to verify the effectiveness of the proposed methods using data collected from an industrial site,and the relatively low RMSE and MAE values demonstrate its advantages compared with some other popular deep learning methods.展开更多
Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of th...Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used.展开更多
Health management permits the reliability of a system and plays a increasingly important role for achieving efficient system-level maintenance.It has been used for remaining useful life(RUL) prognostics of electroni...Health management permits the reliability of a system and plays a increasingly important role for achieving efficient system-level maintenance.It has been used for remaining useful life(RUL) prognostics of electronics-rich system including avionics.Prognostics and health management(PHM) have become highly desirable to provide avionics with system level health management.This paper presents a health management and fusion prognostic model for avionics system,combining three baseline prognostic approaches that are model-based,data-driven and knowledge-based approaches,and integrates merits as well as eliminates some limitations of each single approach to achieve fusion prognostics and improved prognostic performance of RUL estimation.A fusion model built upon an optimal linear combination forecast model is then utilized to fuse single prognostic algorithm representing the three baseline approaches correspondingly,and the presented case study shows that the fusion prognostics can provide RUL estimation more accurate and more robust than either algorithm alone.展开更多
基金the Natural Science Foundation of China(NSFC)(61873024,61773053)the China Central Universities of USTB(FRF-TP-19-049A1Z)the National Key RD Program of China(2017YFB0306403)。
文摘Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productivity of the hot rolling process.In addition,the RUL prediction for rollers is helpful in transitioning from the current regular maintenance strategy to conditional-based maintenance.Therefore,a new method that can extract coarse-grained and fine-grained features from batch data to predict the RUL of the rollers is proposed in this paper.Firstly,a new deep learning network architecture based on recurrent neural networks that can make full use of the extracted coarsegrained fine-grained features to estimate the heath indicator(HI)is developed,where the HI is able to indicate the health state of the roller.Following that,a state-space model is constructed to describe the HI,and the probabilistic distribution of RUL can be estimated by extrapolating the HI degradation model to a predefined failure threshold.Finally,application to a hot strip mill is given to verify the effectiveness of the proposed methods using data collected from an industrial site,and the relatively low RMSE and MAE values demonstrate its advantages compared with some other popular deep learning methods.
文摘Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used.
文摘Health management permits the reliability of a system and plays a increasingly important role for achieving efficient system-level maintenance.It has been used for remaining useful life(RUL) prognostics of electronics-rich system including avionics.Prognostics and health management(PHM) have become highly desirable to provide avionics with system level health management.This paper presents a health management and fusion prognostic model for avionics system,combining three baseline prognostic approaches that are model-based,data-driven and knowledge-based approaches,and integrates merits as well as eliminates some limitations of each single approach to achieve fusion prognostics and improved prognostic performance of RUL estimation.A fusion model built upon an optimal linear combination forecast model is then utilized to fuse single prognostic algorithm representing the three baseline approaches correspondingly,and the presented case study shows that the fusion prognostics can provide RUL estimation more accurate and more robust than either algorithm alone.