We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle pr...We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle properties of polymer nanoparticles were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscope (SEM) and X-ray spectroscopy (EDX). Mesoporous materials were selected as the shell materials to encapsulate the smart core as the stable shell. The mesoporous shell was characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM). All the results showed that a well-defined core-shell structure with mesoporous structure was obtained, and this controllable delivery system will have the great potential in nanomedicine.展开更多
Small-molecule drugs are widely used in daily life.There are still issues with the current industrial synthesis techniques for small-molecule drugs,such as the use of expensive metal catalysts,convoluted reaction proc...Small-molecule drugs are widely used in daily life.There are still issues with the current industrial synthesis techniques for small-molecule drugs,such as the use of expensive metal catalysts,convoluted reaction processes,and non-recyclable catalysts.The benefits of photocatalytic organic synthesis over conventional techniques are mild conditions,environmental friendliness,and great selectivity.Porous framework materials can precisely modulate catalytic sites'electronic state and ligand structure to improve photocatalytic performance.In particular,MOFs,COFs and PCCs based photocatalysts have received extensive research interest due to their unique morphology,structural adjustability,high photocatalytic performance,unique recyclability,excellent chemical stability,easy synthesis and low cost.Therefore,a key area for future research is the development of porous framework materials as photocatalysts for the synthesis of small-molecule drugs or drug precursors.展开更多
Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a s...Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development.展开更多
背景:Janus微/纳米颗粒因具有形状、结构、功能各向异性被广泛应用于组织工程、药物递送、癌症治疗、生物影像和传感等医学领域。目的:阐述Janus微/纳米颗粒在生物医学的前沿应用。方法:通过计算机检索中国知网、万方、PubMed、Web of S...背景:Janus微/纳米颗粒因具有形状、结构、功能各向异性被广泛应用于组织工程、药物递送、癌症治疗、生物影像和传感等医学领域。目的:阐述Janus微/纳米颗粒在生物医学的前沿应用。方法:通过计算机检索中国知网、万方、PubMed、Web of Science数据库中2010-2024年发表的相关文献,分别以“Janus纳米颗粒,Janus颗粒,双面神颗粒,药物递送,癌症治疗,生物影像,生物传感,组织工程”和“Janus nanoparticle,Janus particle,Drug delivery,Cancer therapy,Biosensing,Bioimaging,Tissue engineering”为中、英文检索词,进行筛选、整理、归纳、总结,最终纳入69篇文献进行综述。结果与结论:Janus微/纳米颗粒可根据基础材料性质分为有机、无机、有机-无机复合三大类,其合成策略有遮蔽、自组装、相分离、微流控和成核生长等。Janus微/纳米颗粒可通过高负载率、门控释放、自主运动等特性进行高效率药物递送。Janus微/纳米颗粒除了增强传统癌症治疗措施(放化疗)的治疗效果外,还可以应用于细胞免疫、蛋白药物、细胞铁死亡等新兴癌症治疗方法;可应用于增强生物影像(CT、MRI、超声)的增敏剂,实现高质量成像,用于指导诊断和治疗;可通过运载生长因子、增强生物支架机械性能和抗菌效果,应用于组织工程。综合目前的研究,研究者们通过集合不同有机聚合物、无机材料的物化特性以不同的合成策略合成功能定制的Janus微/纳米颗粒,应用于复杂的生物医学领域。目前Janus微/纳米颗粒应用于组织再生领域、大规模生产和人体临床试验的报道较少,因此该类材料的开发、合成策略、临床安全评估和转化仍需投入更大的研究力度。展开更多
With the development of nanomedicine,nanomaterials have been widely used,offering specific drug delivery to target sites,minimal side effects,and significant therapeutic effects.The kidneys have filtration and reabsor...With the development of nanomedicine,nanomaterials have been widely used,offering specific drug delivery to target sites,minimal side effects,and significant therapeutic effects.The kidneys have filtration and reabsorption functions,with various potential target cell types and a complex structural environment,making the strategies for kidney function protection and recovery after injury complex.This also lays the foundation for the application of nanomedicine in kidney diseases.Currently,evidence in preclinical and clinical settings supports the feasibility of targeted therapy for kidney diseases using drug delivery based on nanomaterials.The prerequisite for nanomedicine in treating kidney diseases is the use of carriers with good biocompatibility,including nanoparticles,hydrogels,liposomes,micelles,dendrimer polymers,adenoviruses,lysozymes,and elastin-like polypeptides.These carriers have precise renal uptake,longer half-life,and targeted organ distribution,protecting and improving the efficacy of the drugs they carry.Additionally,attention should also be paid to the toxicity and solubility of the carriers.While the carriers mentioned above have been used in preclinical studies for targeted therapy of kidney diseases both in vivo and in vitro,extensive clinical trials are still needed to ensure the short-term and long-term effects of nano drugs in the human body.This review will discuss the advantages and limitations of nanoscale drug carrier materials in treating kidney diseases,provide a more comprehensive catalog of nanocarrier materials,and offer prospects for their drug-loading efficacy and clinical applications.展开更多
INTRODUCTIONDevelopment of drug-resistance to chemotherapyand subsequent metastasis of tumor are primarilyresponsible for treatment failure and the death fromcancer. There have been many previous studies onthe relatio...INTRODUCTIONDevelopment of drug-resistance to chemotherapyand subsequent metastasis of tumor are primarilyresponsible for treatment failure and the death fromcancer. There have been many previous studies onthe relationship between expression of multidrugresistance (MDR) phenotype P-glycoprotein (P-gp)and the malignant properties of tumors, but theresults are often conflicting[1-8]. The difference intumor types or MDR phenotype induced by specificagents might account for this discrepancy. Taxotere(TXT), a member of the family of taxanes, hasantitumor activity through its effect of promotingthe polymerization of tubulin[9,10].展开更多
Anticancer drugs are one of the most direct means of cancer therapy.However,the various cancer progressions hamper the development and discovery of anticancer drugs.In fact,the mechanical properties of the tumor cytos...Anticancer drugs are one of the most direct means of cancer therapy.However,the various cancer progressions hamper the development and discovery of anticancer drugs.In fact,the mechanical properties of the tumor cytoskeleton are extremely vital for any phase of cancer,especially in tumor invasion and metastasis.However,in the current category of anticancer drugs,the cytoskeleton-targeting drugs are limited and their role in tumor progression is unclear.Here,we present the mechanical characteristics of tumor stiffness that are tightly regulated by the cancer cytoskeleton,including actin filaments and microtubules during tumor initiation,growth and metastasis,and review the natural drugs that target the cancer cytoskeleton.We define cytoskeleton dynamics as target mechanisms for anticancer drugs and summarize the plant,microbial and marine sources of natural products.Furthermore,this paper also provides a material pathway to study active tumor mechanics,and introduces the unique advantages and future application potential of tumor cytoskeleton-targeting drugs in clinical use.The material approaches to active cancer mechanics are supplied in this review.We aim to promote the development of anticancer drugs that target tumor mechanics by using those material approaches and finding their pharmacological application.展开更多
基金Funded by National Natural Science Foundation of China (Nos.51861135313,U1663225,U1662134,21711530705,21673282,21473246)Fundamental Research Funds for the Central Universities (Nos.19lgpy112,19lgzd16,2019IB005)+3 种基金National Key R&D Program of China (No.2017YFC1103800)Program for Changjiang Scholars and Innovative Research Team in University (No.IRT_15R52)International Science&Technology Cooperation Program of China (No.2015DFE52870)Jilin Province Science and Technology Development Plan (No.20180101208JC)
文摘We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle properties of polymer nanoparticles were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscope (SEM) and X-ray spectroscopy (EDX). Mesoporous materials were selected as the shell materials to encapsulate the smart core as the stable shell. The mesoporous shell was characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM). All the results showed that a well-defined core-shell structure with mesoporous structure was obtained, and this controllable delivery system will have the great potential in nanomedicine.
基金financially supported by the National Natural Science Foundation of China(NSFC,Nos.21501133,22371067)the China Hunan Provincial Science&Technology Department(Nos.2020RC3020 and 2021JJ20021)。
文摘Small-molecule drugs are widely used in daily life.There are still issues with the current industrial synthesis techniques for small-molecule drugs,such as the use of expensive metal catalysts,convoluted reaction processes,and non-recyclable catalysts.The benefits of photocatalytic organic synthesis over conventional techniques are mild conditions,environmental friendliness,and great selectivity.Porous framework materials can precisely modulate catalytic sites'electronic state and ligand structure to improve photocatalytic performance.In particular,MOFs,COFs and PCCs based photocatalysts have received extensive research interest due to their unique morphology,structural adjustability,high photocatalytic performance,unique recyclability,excellent chemical stability,easy synthesis and low cost.Therefore,a key area for future research is the development of porous framework materials as photocatalysts for the synthesis of small-molecule drugs or drug precursors.
基金supported by the Key Research Projects of Universities of Henan Province,No.21A320064 (to XS)the National Key Research and Development Program of China,No.2021YFA1201504 (to LZ)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Science,No.XDB36000000 (to CW)the National Natural Science Foundation of China,Nos.31971295,12374406 (both to LZ)。
文摘Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development.
基金supported by Beijing Hospitals Authority Clinical medicine Development of special funding support (ZLRK202308)National High Level Hospital Clinical Research Funding (2023-NHLHCRF-YS-01)+8 种基金Elite Medical Professionals Project of China-Japan Friendship Hospital (ZRJY2023-GG06)the China Postdoctoral Science Foundation (2023M733986 and 2023T160741)Cross-sectional project of China-Japan Friendship Hospital (2023-HX-JC-10 and 2023-HX-103)International Association of Chinese Nephrologists Research Grant (No.IACNRG-01)the Open Grant from the Pingyuan Laboratory (2023PY-OP-0203)Young Elite Scientists Sponsorship Program by CAST (2023QNRC001 and 2022QNRC001)Beijing Natural Science Foundation (7244407)Independent innovation science fund for young scholar (QNFC034)National Natural Science Foundation (82274327).
文摘With the development of nanomedicine,nanomaterials have been widely used,offering specific drug delivery to target sites,minimal side effects,and significant therapeutic effects.The kidneys have filtration and reabsorption functions,with various potential target cell types and a complex structural environment,making the strategies for kidney function protection and recovery after injury complex.This also lays the foundation for the application of nanomedicine in kidney diseases.Currently,evidence in preclinical and clinical settings supports the feasibility of targeted therapy for kidney diseases using drug delivery based on nanomaterials.The prerequisite for nanomedicine in treating kidney diseases is the use of carriers with good biocompatibility,including nanoparticles,hydrogels,liposomes,micelles,dendrimer polymers,adenoviruses,lysozymes,and elastin-like polypeptides.These carriers have precise renal uptake,longer half-life,and targeted organ distribution,protecting and improving the efficacy of the drugs they carry.Additionally,attention should also be paid to the toxicity and solubility of the carriers.While the carriers mentioned above have been used in preclinical studies for targeted therapy of kidney diseases both in vivo and in vitro,extensive clinical trials are still needed to ensure the short-term and long-term effects of nano drugs in the human body.This review will discuss the advantages and limitations of nanoscale drug carrier materials in treating kidney diseases,provide a more comprehensive catalog of nanocarrier materials,and offer prospects for their drug-loading efficacy and clinical applications.
基金Supported in part by phone-Poulenc Rorer Pharmaceuticals INC
文摘INTRODUCTIONDevelopment of drug-resistance to chemotherapyand subsequent metastasis of tumor are primarilyresponsible for treatment failure and the death fromcancer. There have been many previous studies onthe relationship between expression of multidrugresistance (MDR) phenotype P-glycoprotein (P-gp)and the malignant properties of tumors, but theresults are often conflicting[1-8]. The difference intumor types or MDR phenotype induced by specificagents might account for this discrepancy. Taxotere(TXT), a member of the family of taxanes, hasantitumor activity through its effect of promotingthe polymerization of tubulin[9,10].
基金funded by"Beijing Natural Science Foundation,grant number 6224060","Young Elite Scientists Sponsorship Program by BAST,grant number",BYESS2023192"Program of Beijing Municipal Education Commission,grant number KM202310020006"+1 种基金"Bejing University of Agriculture science and Technology innovation Sparkling support plan,grant number,BUA-HHXD2022007""2022 Research and Innovation ability improvement plan for young teachers of Beijing University of Agriculture,grant number QJKC2022028".
文摘Anticancer drugs are one of the most direct means of cancer therapy.However,the various cancer progressions hamper the development and discovery of anticancer drugs.In fact,the mechanical properties of the tumor cytoskeleton are extremely vital for any phase of cancer,especially in tumor invasion and metastasis.However,in the current category of anticancer drugs,the cytoskeleton-targeting drugs are limited and their role in tumor progression is unclear.Here,we present the mechanical characteristics of tumor stiffness that are tightly regulated by the cancer cytoskeleton,including actin filaments and microtubules during tumor initiation,growth and metastasis,and review the natural drugs that target the cancer cytoskeleton.We define cytoskeleton dynamics as target mechanisms for anticancer drugs and summarize the plant,microbial and marine sources of natural products.Furthermore,this paper also provides a material pathway to study active tumor mechanics,and introduces the unique advantages and future application potential of tumor cytoskeleton-targeting drugs in clinical use.The material approaches to active cancer mechanics are supplied in this review.We aim to promote the development of anticancer drugs that target tumor mechanics by using those material approaches and finding their pharmacological application.