The performance the quaternion-Capon( Q-Capon) beamformer degraded when suppressing the interferences that are coherent with the signal of interest( SOI). To tackle the problem,the spatial smoothing technique is a...The performance the quaternion-Capon( Q-Capon) beamformer degraded when suppressing the interferences that are coherent with the signal of interest( SOI). To tackle the problem,the spatial smoothing technique is adopted in quaternion domain to decorrelate the interferences by using linearly and uniformly spaced two-component electromagnetic vector-sensors. By averaging several translational invariant subarray quaternion covariance matrices,the quaternion spatial smoothing is performed to prevent the SOI cancellation phenomena caused by the presence of coherent interferences. It is demonstrated that the quaternion spatial smoothing Q-Capon beamformer can suppress the coherent interferences remarkably while the computational cost is lower than the complex domain long vector spatial smoothing counterpart. Theoretical analyses and simulation results validate the efficacy of the spatially smoothed Q-Capon beamformer in terms of coherent interference suppression capability.展开更多
A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the p...A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the polarization information of impinging waves,an electromagnetic vector-sensor array outperforms the unpolarized scalar-sensor array in resolving this cyclic ambiguity.However,the electromagnetic vector-sensor array usually consists of cocentered orthogonal loops and dipoles(COLD),which is easily subjected to mutual coupling across these cocentered dipoles/loops.As a result,the source localization performance of the COLD array may substantially degrade rather than being improved.This paper proposes a new source localization method with a non-cocentered orthogonal loop and dipole(NCOLD)array.The NCOLD array contains only one dipole or loop on each array grid,and the intersensor spacings are larger than a half-wavelength.Therefore,unlike the COLD array,these well separated dipoles/loops minimize the mutual coupling effects and extend the spatial aperture as well.With the NCOLD array,the proposed method can effciently exploit the polarization information to offer high localization precision.展开更多
基金Supported by the National Natural Science Foundation of China(61331019)
文摘The performance the quaternion-Capon( Q-Capon) beamformer degraded when suppressing the interferences that are coherent with the signal of interest( SOI). To tackle the problem,the spatial smoothing technique is adopted in quaternion domain to decorrelate the interferences by using linearly and uniformly spaced two-component electromagnetic vector-sensors. By averaging several translational invariant subarray quaternion covariance matrices,the quaternion spatial smoothing is performed to prevent the SOI cancellation phenomena caused by the presence of coherent interferences. It is demonstrated that the quaternion spatial smoothing Q-Capon beamformer can suppress the coherent interferences remarkably while the computational cost is lower than the complex domain long vector spatial smoothing counterpart. Theoretical analyses and simulation results validate the efficacy of the spatially smoothed Q-Capon beamformer in terms of coherent interference suppression capability.
基金supported by the Scientifc Research Fund of Zhejiang Provincial Education Department(No.Y201225848)the Scientifc and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2013124)
文摘A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the polarization information of impinging waves,an electromagnetic vector-sensor array outperforms the unpolarized scalar-sensor array in resolving this cyclic ambiguity.However,the electromagnetic vector-sensor array usually consists of cocentered orthogonal loops and dipoles(COLD),which is easily subjected to mutual coupling across these cocentered dipoles/loops.As a result,the source localization performance of the COLD array may substantially degrade rather than being improved.This paper proposes a new source localization method with a non-cocentered orthogonal loop and dipole(NCOLD)array.The NCOLD array contains only one dipole or loop on each array grid,and the intersensor spacings are larger than a half-wavelength.Therefore,unlike the COLD array,these well separated dipoles/loops minimize the mutual coupling effects and extend the spatial aperture as well.With the NCOLD array,the proposed method can effciently exploit the polarization information to offer high localization precision.