The weighted Gini-Simpson quadratic index is the simplest measure of biodiversity which takes into account the relative abundance of species and some weights assigned to the species. These weights could be assigned ba...The weighted Gini-Simpson quadratic index is the simplest measure of biodiversity which takes into account the relative abundance of species and some weights assigned to the species. These weights could be assigned based on factors such as the phylogenetic distance between species, or their relative conservation values, or even the species richness or vulnerability of the habitats where these species live. In the vast majority of cases where the biodiversity is measured the species are supposed to be independent, which means that the relative proportion of a pair of species is the product of the relative proportions of the component species making up the respective pair. In the first section of the paper, the main versions of the weighted Gini-Simpson index of biodiversity for the pairs and triads of independent species are presented. In the second section of the paper, the weighted Gini-Simpson quadratic index is calculated for the general case when the species are interdependent. In this instance, the weights reflect the conservation values of the species and the distribution pattern variability of the subsets of species in the respective habitat induced by the inter-dependence between species. The third section contains a numerical example.展开更多
The Gini-Simpson quadratic index is a classic measure of diversity, widely used by ecologists. As shown recently, however, this index is not suitable for the measurement of beta diversity when the number of species is...The Gini-Simpson quadratic index is a classic measure of diversity, widely used by ecologists. As shown recently, however, this index is not suitable for the measurement of beta diversity when the number of species is very large. The objective of this paper is to introduce the Rich- Gini-Simpson quadratic index which preserves all the qualities of the classic Gini-Simpson index but behaves very well even when the number of species is very large. The additive partitioning of species diversity using the Rich-Gini- Simpson quadratic index and an application from island biogeography are analyzed.展开更多
The number and composition of species in a community can be quantified withα-diversity indices,including species richness(R),Simpson’s index(D),and the Shannon-Wiener index(H΄).In forest communities,there are large ...The number and composition of species in a community can be quantified withα-diversity indices,including species richness(R),Simpson’s index(D),and the Shannon-Wiener index(H΄).In forest communities,there are large variations in tree size among species and individu-als of the same species,which result in differences in eco-logical processes and ecosystem functions.However,tree size inequality(TSI)has been largely neglected in studies using the available diversity indices.The TSI in the diameter at breast height(DBH)data for each of 99920 m×20 m forest census quadrats was quantified using the Gini index(GI),a measure of the inequality of size distribution.The generalized performance equation was used to describe the rotated and right-shifted Lorenz curve of the cumulative proportion of DBH and the cumulative proportion of number of trees per quadrat.We also examined the relationships ofα-diversity indices with the GI using correlation tests.The generalized performance equation effectively described the rotated and right-shifted Lorenz curve of DBH distributions,with most root-mean-square errors(990 out of 999 quadrats)being<0.0030.There were significant positive correlations between each of threeα-diversity indices(i.e.,R,D,and H’)and the GI.Nevertheless,the total abundance of trees in each quadrat did not significantly influence the GI.This means that the TSI increased with increasing spe-cies diversity.Thus,two new indices are proposed that can balanceα-diversity against the extent of TSI in the com-munity:(1−GI)×D,and(1−GI)×H’.These new indices were significantly correlated with the original D and H΄,and did not increase the extent of variation within each group of indices.This study presents a useful tool for quantifying both species diversity and the variation in tree sizes in forest communities,especially in the face of cumulative species loss under global climate change.展开更多
The nitrogen nutrition index(NNI)is a reliable indicator for diagnosing crop nitrogen(N)status.However,there is currently no specific vegetation index for the NNI inversion across multiple growth periods.To overcome t...The nitrogen nutrition index(NNI)is a reliable indicator for diagnosing crop nitrogen(N)status.However,there is currently no specific vegetation index for the NNI inversion across multiple growth periods.To overcome the limitations of the traditional direct NNI inversion method(NNI_(T1))of the vegetation index and traditional indirect NNI inversion method(NNI_(T2))by inverting intermediate variables including the aboveground dry biomass(AGB)and plant N concentration(PNC),this study proposed a new NNI remote sensing index(NNI_(RS)).A remote-sensing-based critical N dilution curve(Nc_(_RS))was set up directly from two vegetation indices and then used to calculate NNI_(RS).Field data including AGB,PNC,and canopy hyperspectral data were collected over four growing seasons(2012–2013(Exp.1),2013–2014(Exp.2),2014–2015(Exp.3),2015–2016(Exp.4))in Beijing,China.All experimental datasets were cross-validated to each of the NNI models(NNI_(T1),NNI_(T2)and NNI_(RS)).The results showed that:(1)the NNI_(RS)models were represented by the standardized leaf area index determining index(sLAIDI)and the red-edge chlorophyll index(CI_(red edge))in the form of NNI_(RS)=CI_(red edge)/(a×sLAIDI~b),where"a"equals 2.06,2.10,2.08 and 2.02 and"b"equals 0.66,0.73,0.67 and 0.62 when the modeling set data came from Exp.1/2/4,Exp.1/2/3,Exp.1/3/4,and Exp.2/3/4,respectively;(2)the NNI_(RS)models achieved better performance than the other two NNI revised methods,and the ranges of R2 and RMSE were 0.50–0.82 and 0.12–0.14,respectively;(3)when the remaining data were used for verification,the NNI_(RS)models also showed good stability,with RMSE values of 0.09,0.18,0.13 and 0.10,respectively.Therefore,it is concluded that the NNI_(RS)method is promising for the remote assessment of crop N status.展开更多
The Crohn's disease activity index (CDAI) has been commonly used to assess the effects of treatment with different agents in Crohn's disease (CD). However, these studies may be compromised, if the results compar...The Crohn's disease activity index (CDAI) has been commonly used to assess the effects of treatment with different agents in Crohn's disease (CD). However, these studies may be compromised, if the results compared to a placebo or standard therapy group (in the absence of a placebo) substantially differ from the expected response. In addition, significant concerns have been raised regarding the reliability and validity of the CDAI. Reproducibility of the CDAI may be limited as significant inter-observer error has been recorded, even if measurements are done by experienced clinicians with expertise in the diagnosis and treatment of CD. Finally, many CDAI endpoints are open to subjective interpretation and have the potential for manipulation. This is worrisome as there is the potential for significant financial gain, if the results of a clinical trial appear to provide a positive result. Physicians caring for patients should be concerned about the positive results in clinical trials that are sponsored by industry, even if the trials involve respected centers and the results appear in highly ranked medical journals.展开更多
The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity, called γ-diversity, into the average within-site biod...The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity, called γ-diversity, into the average within-site biodiversity or α-diversity, and the biodiversity among sites, or β-diversity. The standard additive partitioning of diversity requires the use of a measure of diversity which is a concave function of the relative abundance of species, like the Shannon entropy or the Gini- Simpson index, for instance. When a phylogenetic distance between species is also taken into account, Rao’s quadratic index has been used as a measure of dissimilarity. Rao’s index, however, is not a concave function of the distribution of relative abundance of either individual species or pairs of species and, consequently, only some nonstandard additive partitionings of diversity have been given using this index. The objective of this paper is to show that the weighted quadratic index of biodiversity, a generalization of the weighted Gini-Simpson index to the pairs of species, is a concave function of the joint distribution of the relative abundance of pairs of species and, therefore, may be used in the standard additive partitioning of diversity instead of Rao’s index. The replication property of this new measure is also discussed.展开更多
Purpose:This paper proposes a discrimination index method based on the Jain’s fairness index to distinguish researchers with the same H-index.Design/methodology/approach:A validity test is used to measure the correla...Purpose:This paper proposes a discrimination index method based on the Jain’s fairness index to distinguish researchers with the same H-index.Design/methodology/approach:A validity test is used to measure the correlation of D-offset with the parameters,i.e.H-index,the number of cited papers,the total number of citations,the number of indexed papers,and the number of uncited papers.The correlation test is based on the Saphiro-Wilk method and Pearson’s product-moment correlation.Findings:The result from the discrimination index calculation is a two-digit decimal value called the discrimination-offset(D-offset),with a range of D-offset from 0.00 to 0.99.The result of the correlation value between the D-offset and the number of uncited papers is 0.35,D-offset with the number of indexed papers is 0.24,and the number of cited papers is 0.27.The test provides the result that it is very unlikely that there exists no relationship between the parameters.Practical implications:For this reason,D-offset is proposed as an additional parameter for H-index to differentiate researchers with the same H-index.The H-index for researchers can be written with the format of“H-index:D-offset”.Originality/value:D-offset is worthy to be considered as a complement value to add the H-index value.If the D-offset is added in the H-index value,the H-index will have more discrimination power to differentiate the rank of the researchers who have the same H-index.展开更多
文摘The weighted Gini-Simpson quadratic index is the simplest measure of biodiversity which takes into account the relative abundance of species and some weights assigned to the species. These weights could be assigned based on factors such as the phylogenetic distance between species, or their relative conservation values, or even the species richness or vulnerability of the habitats where these species live. In the vast majority of cases where the biodiversity is measured the species are supposed to be independent, which means that the relative proportion of a pair of species is the product of the relative proportions of the component species making up the respective pair. In the first section of the paper, the main versions of the weighted Gini-Simpson index of biodiversity for the pairs and triads of independent species are presented. In the second section of the paper, the weighted Gini-Simpson quadratic index is calculated for the general case when the species are interdependent. In this instance, the weights reflect the conservation values of the species and the distribution pattern variability of the subsets of species in the respective habitat induced by the inter-dependence between species. The third section contains a numerical example.
文摘The Gini-Simpson quadratic index is a classic measure of diversity, widely used by ecologists. As shown recently, however, this index is not suitable for the measurement of beta diversity when the number of species is very large. The objective of this paper is to introduce the Rich- Gini-Simpson quadratic index which preserves all the qualities of the classic Gini-Simpson index but behaves very well even when the number of species is very large. The additive partitioning of species diversity using the Rich-Gini- Simpson quadratic index and an application from island biogeography are analyzed.
基金supported by the National Natural Science Foundation of China(32101260).
文摘The number and composition of species in a community can be quantified withα-diversity indices,including species richness(R),Simpson’s index(D),and the Shannon-Wiener index(H΄).In forest communities,there are large variations in tree size among species and individu-als of the same species,which result in differences in eco-logical processes and ecosystem functions.However,tree size inequality(TSI)has been largely neglected in studies using the available diversity indices.The TSI in the diameter at breast height(DBH)data for each of 99920 m×20 m forest census quadrats was quantified using the Gini index(GI),a measure of the inequality of size distribution.The generalized performance equation was used to describe the rotated and right-shifted Lorenz curve of the cumulative proportion of DBH and the cumulative proportion of number of trees per quadrat.We also examined the relationships ofα-diversity indices with the GI using correlation tests.The generalized performance equation effectively described the rotated and right-shifted Lorenz curve of DBH distributions,with most root-mean-square errors(990 out of 999 quadrats)being<0.0030.There were significant positive correlations between each of threeα-diversity indices(i.e.,R,D,and H’)and the GI.Nevertheless,the total abundance of trees in each quadrat did not significantly influence the GI.This means that the TSI increased with increasing spe-cies diversity.Thus,two new indices are proposed that can balanceα-diversity against the extent of TSI in the com-munity:(1−GI)×D,and(1−GI)×H’.These new indices were significantly correlated with the original D and H΄,and did not increase the extent of variation within each group of indices.This study presents a useful tool for quantifying both species diversity and the variation in tree sizes in forest communities,especially in the face of cumulative species loss under global climate change.
基金supported by the earmarked fund for China Agriculture Research System(CARS-03)the National Key Research and Development Program of China(2017YFD0201501 and 2016YFD020060306)the National Natural Science Foundation of China(41701375 and 61661136003)。
文摘The nitrogen nutrition index(NNI)is a reliable indicator for diagnosing crop nitrogen(N)status.However,there is currently no specific vegetation index for the NNI inversion across multiple growth periods.To overcome the limitations of the traditional direct NNI inversion method(NNI_(T1))of the vegetation index and traditional indirect NNI inversion method(NNI_(T2))by inverting intermediate variables including the aboveground dry biomass(AGB)and plant N concentration(PNC),this study proposed a new NNI remote sensing index(NNI_(RS)).A remote-sensing-based critical N dilution curve(Nc_(_RS))was set up directly from two vegetation indices and then used to calculate NNI_(RS).Field data including AGB,PNC,and canopy hyperspectral data were collected over four growing seasons(2012–2013(Exp.1),2013–2014(Exp.2),2014–2015(Exp.3),2015–2016(Exp.4))in Beijing,China.All experimental datasets were cross-validated to each of the NNI models(NNI_(T1),NNI_(T2)and NNI_(RS)).The results showed that:(1)the NNI_(RS)models were represented by the standardized leaf area index determining index(sLAIDI)and the red-edge chlorophyll index(CI_(red edge))in the form of NNI_(RS)=CI_(red edge)/(a×sLAIDI~b),where"a"equals 2.06,2.10,2.08 and 2.02 and"b"equals 0.66,0.73,0.67 and 0.62 when the modeling set data came from Exp.1/2/4,Exp.1/2/3,Exp.1/3/4,and Exp.2/3/4,respectively;(2)the NNI_(RS)models achieved better performance than the other two NNI revised methods,and the ranges of R2 and RMSE were 0.50–0.82 and 0.12–0.14,respectively;(3)when the remaining data were used for verification,the NNI_(RS)models also showed good stability,with RMSE values of 0.09,0.18,0.13 and 0.10,respectively.Therefore,it is concluded that the NNI_(RS)method is promising for the remote assessment of crop N status.
文摘The Crohn's disease activity index (CDAI) has been commonly used to assess the effects of treatment with different agents in Crohn's disease (CD). However, these studies may be compromised, if the results compared to a placebo or standard therapy group (in the absence of a placebo) substantially differ from the expected response. In addition, significant concerns have been raised regarding the reliability and validity of the CDAI. Reproducibility of the CDAI may be limited as significant inter-observer error has been recorded, even if measurements are done by experienced clinicians with expertise in the diagnosis and treatment of CD. Finally, many CDAI endpoints are open to subjective interpretation and have the potential for manipulation. This is worrisome as there is the potential for significant financial gain, if the results of a clinical trial appear to provide a positive result. Physicians caring for patients should be concerned about the positive results in clinical trials that are sponsored by industry, even if the trials involve respected centers and the results appear in highly ranked medical journals.
文摘The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity, called γ-diversity, into the average within-site biodiversity or α-diversity, and the biodiversity among sites, or β-diversity. The standard additive partitioning of diversity requires the use of a measure of diversity which is a concave function of the relative abundance of species, like the Shannon entropy or the Gini- Simpson index, for instance. When a phylogenetic distance between species is also taken into account, Rao’s quadratic index has been used as a measure of dissimilarity. Rao’s index, however, is not a concave function of the distribution of relative abundance of either individual species or pairs of species and, consequently, only some nonstandard additive partitionings of diversity have been given using this index. The objective of this paper is to show that the weighted quadratic index of biodiversity, a generalization of the weighted Gini-Simpson index to the pairs of species, is a concave function of the joint distribution of the relative abundance of pairs of species and, therefore, may be used in the standard additive partitioning of diversity instead of Rao’s index. The replication property of this new measure is also discussed.
基金This research was financially supported by the Ministry of Research and Technology,Republic of Indonesia through Fundamental Research Grant No.225-98/UN7.6.1/PP/2020.
文摘Purpose:This paper proposes a discrimination index method based on the Jain’s fairness index to distinguish researchers with the same H-index.Design/methodology/approach:A validity test is used to measure the correlation of D-offset with the parameters,i.e.H-index,the number of cited papers,the total number of citations,the number of indexed papers,and the number of uncited papers.The correlation test is based on the Saphiro-Wilk method and Pearson’s product-moment correlation.Findings:The result from the discrimination index calculation is a two-digit decimal value called the discrimination-offset(D-offset),with a range of D-offset from 0.00 to 0.99.The result of the correlation value between the D-offset and the number of uncited papers is 0.35,D-offset with the number of indexed papers is 0.24,and the number of cited papers is 0.27.The test provides the result that it is very unlikely that there exists no relationship between the parameters.Practical implications:For this reason,D-offset is proposed as an additional parameter for H-index to differentiate researchers with the same H-index.The H-index for researchers can be written with the format of“H-index:D-offset”.Originality/value:D-offset is worthy to be considered as a complement value to add the H-index value.If the D-offset is added in the H-index value,the H-index will have more discrimination power to differentiate the rank of the researchers who have the same H-index.