This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aim...This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aims to minimize the maximum completion time,the total distance covered by AGVs,and the distance traveled while empty-loaded.The improved hybrid algorithm combines the improved genetic algorithm(GA)and the simulated annealing algorithm(SA)to strengthen the local search ability of the algorithm and improve the stability of the calculation results.Based on the characteristics of the composite operation mode,the authors introduce the combined coding and parallel decoding mode and calculate the fitness function with the grey entropy parallel analysis method to solve the multi-objective problem.The grey entropy parallel analysis method is a combination of the grey correlation analysis method and the entropy weighting method to solve multi-objective solving problems.A task advance evaluation strategy is proposed in the process of crossover and mutation operator to guide the direction of crossover and mutation.The computational experiments results show that the improved hybrid algorithm is better than the GA and the genetic algorithm with task advance evaluation strategy(AEGA)in terms of convergence speed and solution results,and the effectiveness of the multi-objective solution is proved.All three objectives are optimized and the proposed algorithm has an optimization of 7.6%respectively compared with the GA and 3.4%compared with the AEGA in terms of the objective of maximum completion time.展开更多
The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one opt...The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.展开更多
Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassem...Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.展开更多
In rough communication, because each agent has a different language and cannot provide precise communication to each other, the concept translated among multi-agents will loss some information and this results in a le...In rough communication, because each agent has a different language and cannot provide precise communication to each other, the concept translated among multi-agents will loss some information and this results in a less or rougher concept. With different translation sequences, the problem of information loss is varied. To get the translation sequence, in which the jth agent taking part in rough communication gets maximum information, a simulated annealing algorithm is used. Analysis and simulation of this algorithm demonstrate its effectiveness.展开更多
Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annea...Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annealing (SA) algorithm for detecting graph isomorphism is proposed, and the proposed SA algorithm is well suited to deal with random graphs with large size. To verify the validity of the proposed SA algorithm, simulations are performed on three pairs of small graphs and four pairs of large random graphs with edge densities 0.5, 0.1, and 0.01, respectively. The simulation results show that the proposed SA algorithm can detect graph isomorphism with a high probability.展开更多
Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123,...Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.展开更多
Alloy nanoparticles exhibit higher catalytic activity than monometallic nanoparticles, and their stable structures are of importance to their applications. We employ the simulated annealing algorithm to systematically...Alloy nanoparticles exhibit higher catalytic activity than monometallic nanoparticles, and their stable structures are of importance to their applications. We employ the simulated annealing algorithm to systematically explore the stable structure and segregation behavior of tetrahexahedral Pt–Pd–Cu–Au quaternary alloy nanoparticles. Three alloy nanoparticles consisting of 443 atoms, 1417 atoms, and 3285 atoms are considered and compared. The preferred positions of atoms in the nanoparticles are analyzed. The simulation results reveal that Cu and Au atoms tend to occupy the surface, Pt atoms preferentially occupy the middle layers, and Pd atoms tend to segregate to the inner layers. Furthermore, Au atoms present stronger surface segregation than Cu ones. This study provides a fundamental understanding on the structural features and segregation phenomena of multi-metallic nanoparticles.展开更多
Employing Simulated Annealing Algorithm (SAA) and many measured data, acalculation model of work roll wear was built in the 2 800 mm 4-high mill of Wuhan Iron and Steel(Group) Co. (WISCO). The model was a semi-theory ...Employing Simulated Annealing Algorithm (SAA) and many measured data, acalculation model of work roll wear was built in the 2 800 mm 4-high mill of Wuhan Iron and Steel(Group) Co. (WISCO). The model was a semi-theory practical formula. Its pattern and magnitude werestill hardly defined with classical optimization methods. But the problem could be resolved by SAA.It was pretty high precision to predict the values for the wear profiles of work roll in a rollingunit. After one-year application, the results show that the model is feasible in engineering, and itcan be applied to predict the wear profiles of work roll in other mills.展开更多
With the progress of computer technology, water pollution control and planning has been a hot topic in the scientific community. This paper discusses corresponding research on the applications of cyclic water quality ...With the progress of computer technology, water pollution control and planning has been a hot topic in the scientific community. This paper discusses corresponding research on the applications of cyclic water quality model and simulated annealing algorithm for water pollution control and planning. Environmental engineering education has been the focus of much attention in recent years. Teaching methods of water pollution control and sustainable teaching innovation and creation was explored by many scholars, and the majority of workers engaged in teaching the course. The simulation result proves the effectiveness of the method. We plan to conduct more research in the future research to obtain better research result.展开更多
We propose a method for estimating the mutual coupling coefficient among antennas in this paper which is based on the principle of signal subspace and the simulated annealing (SA) algorithm. The computer simulation ...We propose a method for estimating the mutual coupling coefficient among antennas in this paper which is based on the principle of signal subspace and the simulated annealing (SA) algorithm. The computer simulation has been conducted to illustrate the' excellent performance of this method and to demonstrate that it is statistically efficient. The benefit of this new method is that calibration signals and unknown signals can be received simultaneously, during the course of calibration.展开更多
A method of spectrum estimation based on the genetic simulated annealing(GSA)algorithm is proposed,which is applied to retrieve the three-dimensional wind field of typhoon Nangka observed by our research group.Compare...A method of spectrum estimation based on the genetic simulated annealing(GSA)algorithm is proposed,which is applied to retrieve the three-dimensional wind field of typhoon Nangka observed by our research group.Compared to the genetic algorithm(GA),the GSA algorithm not only extends the detection range and guarantees the accuracy of retrieval results but also demonstrates a faster retrieval speed.Experimental results indicate that both the GA and GSA algorithms can enhance the detection range by 35%more than the least squares method.However,the convergence speed of the GSA algorithm is 17 times faster than that of the GA,which is more beneficial for real-time data processing.展开更多
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig...In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.展开更多
Outline-free floorplanning focuses on area and wirelength reductions, which are usually meaningless, since they can hardly satisfy modern design requirements. We concentrate on a more difficult and useful issue, fixed...Outline-free floorplanning focuses on area and wirelength reductions, which are usually meaningless, since they can hardly satisfy modern design requirements. We concentrate on a more difficult and useful issue, fixed-outline floorplanning. This issue imposes fixed-outline constraints on the outline-free floorplanning, making the physical design more interesting and challenging. The contributions of this paper are primarily twofold. First, a modified simulated annealing(MSA) algorithm is proposed. In the beginning of the evolutionary process, a new attenuation formula is used to decrease the temperature slowly, to enhance MSA's global searching capacity. After a period of time, the traditional attenuation formula is employed to decrease the temperature rapidly, to maintain MSA's local searching capacity. Second, an excessive area model is designed to guide MSA to find feasible solutions readily. This can save much time for refining feasible solutions. Additionally, B*-tree representation is known as a very useful method for characterizing floorplanning. Therefore, it is employed to perform a perturbing operation for MSA. Finally, six groups of benchmark instances with different dead spaces and aspect ratios—circuits n10, n30, n50, n100, n200, and n300—are chosen to demonstrate the efficiency of our proposed method on fixed-outline floorplanning. Compared to several existing methods, the proposed method is more efficient in obtaining desirable objective function values associated with the chip area, wirelength, and fixed-outline constraints.展开更多
Fleets of autonomous vehicles including shuttle buses,freight trucks,and road sweepers will be deployed in the Olympic Vil-lage during Beijing 2022 Winter Olympics.This requires intelligent charging infrastructure bas...Fleets of autonomous vehicles including shuttle buses,freight trucks,and road sweepers will be deployed in the Olympic Vil-lage during Beijing 2022 Winter Olympics.This requires intelligent charging infrastructure based on wireless power transfer technology to be equipped.To increase the misalignment tolerance of a high-power wireless charger,the robustness of the magnetic coupler should be optimized.This paper presents a new type of unipolar coupler,which is composed of three con-nected coils in series.The dimensional configuration of the coils is analyzed by the finite element method.The characteristic parameters of the coil are identified with their influence on the self-inductance and coupling coefficient.An expert model is built,whose feasibility can be verified in the aimed design domain.Combined with the expert model,an improved simulated annealing algorithm with a backtracking mechanism is proposed.The primary coil can reach the expected characteristics from any starting parameter combination through the proposed optimization algorithm.Under the same conditions in terms of external circuit parameters,ferrite usage,and aluminum shielding,the offset sensitivity of the magnetic coupler can be reduced from 58.79%to 18.89%.A prototype is established,validating the feasibility of the proposed coil structure with the optimized parameter algorithm.展开更多
Simulated annealing algorithm is a mathematic model,which imitates the physical process of annealing. And optical thin film is widely used in many industry.Its design is difficult and can be regarded as an optimizatio...Simulated annealing algorithm is a mathematic model,which imitates the physical process of annealing. And optical thin film is widely used in many industry.Its design is difficult and can be regarded as an optimization problem.In this paper,we use the simulated annealing algorithm to design an edge filter,which is composed of 20 dielectric thin film layers with TiO2 and SiO2.The simulated annealing algorithm is a very robust algorithm for optical thin film design.展开更多
On the basis of computational of transonic viscid flow, the simulated annealing algorithm, used in statistical mechanics to study solid cooling process, is adaptedfor soving multi-objective cascades design problem. Th...On the basis of computational of transonic viscid flow, the simulated annealing algorithm, used in statistical mechanics to study solid cooling process, is adaptedfor soving multi-objective cascades design problem. The simulated annealing algorithmdraws an analogy between the energy minimization in physical system and the objectivefunction in the real design problem, To model the multi-objective functions, a minimumdeviation method is used. In this paper, the loss and work are considered as the objectivefunctions. Simulated results indicate that this algorithm can be effectively applied to theimprovement of the design for transonic turbine cascades.展开更多
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p...With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.展开更多
Multi-objective optimization of crashworthiness in automobile front-end structure was performed,and finite element model(FEM)was validated by experimental results to ensure that FEM can predict the response value with...Multi-objective optimization of crashworthiness in automobile front-end structure was performed,and finite element model(FEM)was validated by experimental results to ensure that FEM can predict the response value with sufficient accuracy.Seven design variables and four crashworthiness indicators were defined.Through orthogonal design method,18 FEMs were established,and the response values of crashworthiness indicators were extracted.By using the variable-response specimen matrix,Kriging surrogate model(KSM)was constructed to replace FEM to refect the function correlation between variables and responses.The accuracy of KSM was also validated.Finally,the simulated annealing optimization algorithm was implemented in KSM to seek optimal and reliable solutions.Based on the optimal results and comparison analysis,the 9096-th iteration point was the optimal solution.Although the intrusion of firewall and the mass of optimal structure increased slightly,the vehicle acceleration of the optimal solution decreased by 6.9%,which fectively reduced the risk of occupant injury.展开更多
A new kind of multiobjective simulated annealing algorithm is proposed,in which the concept of non dominated character is introduced and a new multiobjective acceptance criterion is set up.The optimization example of...A new kind of multiobjective simulated annealing algorithm is proposed,in which the concept of non dominated character is introduced and a new multiobjective acceptance criterion is set up.The optimization example of a typical mathematical problem with two minimum objective functions indicates that all of the solutions contract to the set of the non dominated points,and the variation trend of the optimal solutions is verified to be identical with that obtained using Genetic Algor thms.The new developed algorithm is then applied to the multiobjective optimization design of turbine cascades,in which it is coupled with the aerodynamics computation of the cascade flow fields and performance and the calculated loss coefficient and work potential of the cascade are considered as the objective functions,thus setting up a technique to the engineering optimization design for the cascades.The optimization results,by the view of a group of optimal solutions,show that the algorithm is superior to the traditional technique of multiobjective optimization design and can be applied to more than two objective optimization cascade design problem or other engineering multiobjective optimization designs.展开更多
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom...A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.展开更多
基金the Shandong Province Key Research and Development Program under Grant No.2021SFGC0601.
文摘This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aims to minimize the maximum completion time,the total distance covered by AGVs,and the distance traveled while empty-loaded.The improved hybrid algorithm combines the improved genetic algorithm(GA)and the simulated annealing algorithm(SA)to strengthen the local search ability of the algorithm and improve the stability of the calculation results.Based on the characteristics of the composite operation mode,the authors introduce the combined coding and parallel decoding mode and calculate the fitness function with the grey entropy parallel analysis method to solve the multi-objective problem.The grey entropy parallel analysis method is a combination of the grey correlation analysis method and the entropy weighting method to solve multi-objective solving problems.A task advance evaluation strategy is proposed in the process of crossover and mutation operator to guide the direction of crossover and mutation.The computational experiments results show that the improved hybrid algorithm is better than the GA and the genetic algorithm with task advance evaluation strategy(AEGA)in terms of convergence speed and solution results,and the effectiveness of the multi-objective solution is proved.All three objectives are optimized and the proposed algorithm has an optimization of 7.6%respectively compared with the GA and 3.4%compared with the AEGA in terms of the objective of maximum completion time.
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No. RO294/9).
文摘The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.
基金supported by the National High Technology Research and Development Program of China(2006AA04Z427).
文摘Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.
基金the Natural Science Foundation of Shandong Province (Y2006A12)the Scientific ResearchDevelopment Project of Shandong Provincial Education Department(J06P01)the Doctoral Foundation of University of Jinan(B0633).
文摘In rough communication, because each agent has a different language and cannot provide precise communication to each other, the concept translated among multi-agents will loss some information and this results in a less or rougher concept. With different translation sequences, the problem of information loss is varied. To get the translation sequence, in which the jth agent taking part in rough communication gets maximum information, a simulated annealing algorithm is used. Analysis and simulation of this algorithm demonstrate its effectiveness.
基金the National Natural Science Foundation of China (60373089, 60674106, and 60533010)the National High Technology Research and Development "863" Program (2006AA01Z104)
文摘Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annealing (SA) algorithm for detecting graph isomorphism is proposed, and the proposed SA algorithm is well suited to deal with random graphs with large size. To verify the validity of the proposed SA algorithm, simulations are performed on three pairs of small graphs and four pairs of large random graphs with edge densities 0.5, 0.1, and 0.01, respectively. The simulation results show that the proposed SA algorithm can detect graph isomorphism with a high probability.
基金Project(2009GK2009) supported by Science and Technology Department Funds of Hunan Province,ChinaProject(08C26224302178) supported by Innovation Fund for Technology Based Firms of China
文摘Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51271156,11474234,and 61403318)the Natural Science Foundation of Fujian Province of China(Grant Nos.2013J01255 and 2013J06002)
文摘Alloy nanoparticles exhibit higher catalytic activity than monometallic nanoparticles, and their stable structures are of importance to their applications. We employ the simulated annealing algorithm to systematically explore the stable structure and segregation behavior of tetrahexahedral Pt–Pd–Cu–Au quaternary alloy nanoparticles. Three alloy nanoparticles consisting of 443 atoms, 1417 atoms, and 3285 atoms are considered and compared. The preferred positions of atoms in the nanoparticles are analyzed. The simulation results reveal that Cu and Au atoms tend to occupy the surface, Pt atoms preferentially occupy the middle layers, and Pd atoms tend to segregate to the inner layers. Furthermore, Au atoms present stronger surface segregation than Cu ones. This study provides a fundamental understanding on the structural features and segregation phenomena of multi-metallic nanoparticles.
基金[This work was financially supported by the National Natural Science Foundation of China (No.59835170).]
文摘Employing Simulated Annealing Algorithm (SAA) and many measured data, acalculation model of work roll wear was built in the 2 800 mm 4-high mill of Wuhan Iron and Steel(Group) Co. (WISCO). The model was a semi-theory practical formula. Its pattern and magnitude werestill hardly defined with classical optimization methods. But the problem could be resolved by SAA.It was pretty high precision to predict the values for the wear profiles of work roll in a rollingunit. After one-year application, the results show that the model is feasible in engineering, and itcan be applied to predict the wear profiles of work roll in other mills.
文摘With the progress of computer technology, water pollution control and planning has been a hot topic in the scientific community. This paper discusses corresponding research on the applications of cyclic water quality model and simulated annealing algorithm for water pollution control and planning. Environmental engineering education has been the focus of much attention in recent years. Teaching methods of water pollution control and sustainable teaching innovation and creation was explored by many scholars, and the majority of workers engaged in teaching the course. The simulation result proves the effectiveness of the method. We plan to conduct more research in the future research to obtain better research result.
基金Supported by the 863 High Technology Project ofChina (2001AA631050)
文摘We propose a method for estimating the mutual coupling coefficient among antennas in this paper which is based on the principle of signal subspace and the simulated annealing (SA) algorithm. The computer simulation has been conducted to illustrate the' excellent performance of this method and to demonstrate that it is statistically efficient. The benefit of this new method is that calibration signals and unknown signals can be received simultaneously, during the course of calibration.
基金supported by the Pre-research Project of Civilian Space(No.D040103)the Joint Project of National Natural Science Foundation of China(No.U23A20379)。
文摘A method of spectrum estimation based on the genetic simulated annealing(GSA)algorithm is proposed,which is applied to retrieve the three-dimensional wind field of typhoon Nangka observed by our research group.Compared to the genetic algorithm(GA),the GSA algorithm not only extends the detection range and guarantees the accuracy of retrieval results but also demonstrates a faster retrieval speed.Experimental results indicate that both the GA and GSA algorithms can enhance the detection range by 35%more than the least squares method.However,the convergence speed of the GSA algorithm is 17 times faster than that of the GA,which is more beneficial for real-time data processing.
基金funded by the National Natural Science Foundation of China(42174131)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03).
文摘In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.
基金supported by the National Natural Science Foundation of China(Nos.61403174 and 61503165)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.14KJB 520011)the Jiangsu Provincial Science Foundation for Youths(No.BK20150239)
文摘Outline-free floorplanning focuses on area and wirelength reductions, which are usually meaningless, since they can hardly satisfy modern design requirements. We concentrate on a more difficult and useful issue, fixed-outline floorplanning. This issue imposes fixed-outline constraints on the outline-free floorplanning, making the physical design more interesting and challenging. The contributions of this paper are primarily twofold. First, a modified simulated annealing(MSA) algorithm is proposed. In the beginning of the evolutionary process, a new attenuation formula is used to decrease the temperature slowly, to enhance MSA's global searching capacity. After a period of time, the traditional attenuation formula is employed to decrease the temperature rapidly, to maintain MSA's local searching capacity. Second, an excessive area model is designed to guide MSA to find feasible solutions readily. This can save much time for refining feasible solutions. Additionally, B*-tree representation is known as a very useful method for characterizing floorplanning. Therefore, it is employed to perform a perturbing operation for MSA. Finally, six groups of benchmark instances with different dead spaces and aspect ratios—circuits n10, n30, n50, n100, n200, and n300—are chosen to demonstrate the efficiency of our proposed method on fixed-outline floorplanning. Compared to several existing methods, the proposed method is more efficient in obtaining desirable objective function values associated with the chip area, wirelength, and fixed-outline constraints.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFE0104700)。
文摘Fleets of autonomous vehicles including shuttle buses,freight trucks,and road sweepers will be deployed in the Olympic Vil-lage during Beijing 2022 Winter Olympics.This requires intelligent charging infrastructure based on wireless power transfer technology to be equipped.To increase the misalignment tolerance of a high-power wireless charger,the robustness of the magnetic coupler should be optimized.This paper presents a new type of unipolar coupler,which is composed of three con-nected coils in series.The dimensional configuration of the coils is analyzed by the finite element method.The characteristic parameters of the coil are identified with their influence on the self-inductance and coupling coefficient.An expert model is built,whose feasibility can be verified in the aimed design domain.Combined with the expert model,an improved simulated annealing algorithm with a backtracking mechanism is proposed.The primary coil can reach the expected characteristics from any starting parameter combination through the proposed optimization algorithm.Under the same conditions in terms of external circuit parameters,ferrite usage,and aluminum shielding,the offset sensitivity of the magnetic coupler can be reduced from 58.79%to 18.89%.A prototype is established,validating the feasibility of the proposed coil structure with the optimized parameter algorithm.
文摘Simulated annealing algorithm is a mathematic model,which imitates the physical process of annealing. And optical thin film is widely used in many industry.Its design is difficult and can be regarded as an optimization problem.In this paper,we use the simulated annealing algorithm to design an edge filter,which is composed of 20 dielectric thin film layers with TiO2 and SiO2.The simulated annealing algorithm is a very robust algorithm for optical thin film design.
文摘On the basis of computational of transonic viscid flow, the simulated annealing algorithm, used in statistical mechanics to study solid cooling process, is adaptedfor soving multi-objective cascades design problem. The simulated annealing algorithmdraws an analogy between the energy minimization in physical system and the objectivefunction in the real design problem, To model the multi-objective functions, a minimumdeviation method is used. In this paper, the loss and work are considered as the objectivefunctions. Simulated results indicate that this algorithm can be effectively applied to theimprovement of the design for transonic turbine cascades.
基金This research is supported by the Science and Technology Program of Gansu Province(No.23JRRA880).
文摘With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.
文摘Multi-objective optimization of crashworthiness in automobile front-end structure was performed,and finite element model(FEM)was validated by experimental results to ensure that FEM can predict the response value with sufficient accuracy.Seven design variables and four crashworthiness indicators were defined.Through orthogonal design method,18 FEMs were established,and the response values of crashworthiness indicators were extracted.By using the variable-response specimen matrix,Kriging surrogate model(KSM)was constructed to replace FEM to refect the function correlation between variables and responses.The accuracy of KSM was also validated.Finally,the simulated annealing optimization algorithm was implemented in KSM to seek optimal and reliable solutions.Based on the optimal results and comparison analysis,the 9096-th iteration point was the optimal solution.Although the intrusion of firewall and the mass of optimal structure increased slightly,the vehicle acceleration of the optimal solution decreased by 6.9%,which fectively reduced the risk of occupant injury.
文摘A new kind of multiobjective simulated annealing algorithm is proposed,in which the concept of non dominated character is introduced and a new multiobjective acceptance criterion is set up.The optimization example of a typical mathematical problem with two minimum objective functions indicates that all of the solutions contract to the set of the non dominated points,and the variation trend of the optimal solutions is verified to be identical with that obtained using Genetic Algor thms.The new developed algorithm is then applied to the multiobjective optimization design of turbine cascades,in which it is coupled with the aerodynamics computation of the cascade flow fields and performance and the calculated loss coefficient and work potential of the cascade are considered as the objective functions,thus setting up a technique to the engineering optimization design for the cascades.The optimization results,by the view of a group of optimal solutions,show that the algorithm is superior to the traditional technique of multiobjective optimization design and can be applied to more than two objective optimization cascade design problem or other engineering multiobjective optimization designs.
文摘A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.