A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were:...A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were: 35°C, pH=7.0-7.4, corresponding to the environments of formation of the sandstone-hosted interlayer oxidation-zone type uranium deposits in Xinjiang, NW China. Uraninite was formed on the surface of the host bacteria after a one-week's incubation. Therefore, sulfate-reducing bacteria, which existed extensively in Jurassic sandstone-producing environments, might have participated in the biomineralization of this uranium deposit. There is an important difference in the order- disorder of the crystalline structure between the uraninite produced by Desulfovibrio desulfuricans and naturally occurring uraninite. Long time and slow precipitation and growth of uraninite in the geological environment might have resulted in larger uraninite crystals, with uraninite nanocrystals arranged in order, whereas the experimentally produced uraninite is composed of unordered uraninite nanocrystals which, in contrast, result from the short time span of formation and rapid precipitation and growth of uraninite. The discovery has important implications for understanding genetic significance in mineralogy, and also indicates that in-situ bioremediation of U-contaminated environments and use of biotechnology in the treatment of radioactive liquid waste is being contemplated.展开更多
A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,in...A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ.展开更多
In response to the unclear understanding of fracture propagation and intersection interference in zipper fracturing under the factory development model of deep shale gas wells,a coupled hydro-mechanical model for zipp...In response to the unclear understanding of fracture propagation and intersection interference in zipper fracturing under the factory development model of deep shale gas wells,a coupled hydro-mechanical model for zipper fracturing considering the influence of natural fracture zones was established based on the finite element–discrete element method.The reliability of the model was verified using experimental data and field monitoring pressure increase data.Taking the deep shale gas reservoir in southern Sichuan as an example,the propagation and interference laws of fracturing fractures under the influence of natural fracture zones with different characteristics were studied.The results show that the large approaching angle fracture zone has a blocking effect on the forward propagation of fracturing fractures and the intersection of inter well fractures.During pump shutdown,hydraulic fractures exhibit continued expansion behavior under net pressure driving.Under high stress difference,as the approaching angle of the fracture zone increases,the response well pressure increase and the total length of the fractured fracture show a trend of first decreasing and then increasing,and first increasing and then decreasing,respectively.Compared to small approach angle fracture zones,natural fracture zones with large approach angles require longer time and have greater difficulty to intersect.The width of fractures and the length of natural fractures are negatively and positively correlated with the response well pressure increase,respectively,and positively and negatively correlated with the time required for intersection,the total length of hydraulic fractures,and fracturing efficiency,respectively.As the displacement distance of the well increases,the probability of fracture intersection decreases,but the regularity between displacement distance and the response well pressure increase and the total length of fractures is not obvious.展开更多
This study employs similar simulation testing and discrete element simulation coupling to analyze the failure and deformation processes of a model coal seam's roof.The caving area of the overburden rock is divided...This study employs similar simulation testing and discrete element simulation coupling to analyze the failure and deformation processes of a model coal seam's roof.The caving area of the overburden rock is divided into three zones:the delamination fracture zone,broken fracture zone,and compaction zone.The caving and fracture zones'heights are approximately 110 m above the coal seam,with a maximum subsidence of 11 m.The delamination fracture zone's porosity range is between 0.2 and 0.3,while the remainder of the roof predominantly exhibits a porosity of less than 0.1.In addition,the numerical model's stress analysis revealed that the overburden rock's displacement zone forms an'arch-beam'structure starting from 160 m,with the maximum and minimum stress values decreasing as the distance of advancement increases.In the stress beam interval of the overburden rock,the maximum value changes periodically as the advancement distance increases.Based on a comparative analysis between observable data from on-site work and numerical simulation results,the stress data from the numerical simulation are essentially consistent with the actual results detected on-site,indicating the validity of the numerical simulation results.展开更多
Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th...Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.展开更多
Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based ...Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.展开更多
Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has ...Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has a long construction period,is highly dangerous,and is difficult to experiment with.In order to solve the contradiction between the traditional theory teaching of civil engineering and the engineering training of students,the construction of virtual simulation experimental teaching courses with a high degree of realism,intuition,and accuracy can be used as a useful supplement and innovation of experimental and practical teaching.This paper takes the virtual simulation experimental teaching course of urban overpasses as an example,introduces the necessity and practicability of the course construction,and describes the experimental principle structure of the course,the simulation scene design,the experimental teaching process,the experimental method,etc.The course has achieved good application results,and it has been recognized as the first-class virtual simulation teaching course of the Chongqing Municipal Government,which provides certain references to the construction of the same type of courses in the civil engineering profession.展开更多
All engineering students need to develop their important skills of leadership in project management. Many students have never been leaders in their social and school lives. A leading role is unimaginable to them and h...All engineering students need to develop their important skills of leadership in project management. Many students have never been leaders in their social and school lives. A leading role is unimaginable to them and hence they cannot imagine how to achieve it. The purpose of this paper is to report a result of a new leadership education program which links a variety of simulated experiences with real actions of students in project based learning (PBL) to develop their leadership ability. The first step is for graduate students to gain knowledge in the leadership arena. Then, they utilize simulation to experience leadership actions many times. Simulation provides a safe environment in which they can try out many different approaches in taking leadership in various situations. In the next step, students as a team utilize PBL, so that the above simulated experiences can help them to actually take leadership. Students can apply trained leadership to actual projects. It is highly effective to apply conscious leadership to a project aimed at a specific goal in limited circumstances. This education repeats both of the steps above, raising leadership abilities in an upward spiral. In terms of students' evaluation of leadership education in project management, 360-degree assessments were carried out by teachers, senior, and junior students before and after the course, and authors compare their assessments thoroughly. As a result, authors are assured that students not only gained knowledge but also raised leadership abilities in their actions after this education. Six months after the time of leadership education employing simulated experiences and PBL, follow-up interviews were conducted on its effects. Authors recognized the cyclic period that students apply simulated experiences to PBL and that they seek different approaches in simulation for solving problems found in reality. This research concludes that this cycle of simulator and PBL can produce effective leadership actions.展开更多
<div style="text-align:justify;"> The purpose of this study is to prevent the occurrence of falls by defining the symptoms of falls and detecting them in advance. The focus of the study is on the speci...<div style="text-align:justify;"> The purpose of this study is to prevent the occurrence of falls by defining the symptoms of falls and detecting them in advance. The focus of the study is on the specific definition of “Falling Symptoms”. In this regard, we conducted a questionnaire survey on people of different ages to obtain the state of themselves and their surroundings when they fell down. In addition, we used the elderly simulated experience kit to achieve the purpose of using young people to replace the elderly. Young people were asked to walk on different roads in different shoes with and without elderly simulated experience kit and photographed them with a high-speed camera to observe the changes of their muscles and joints. We also simulated the movement of center of gravity of the people with and without elderly simulated experience kit by a pressure distribution sensor mat. </div>展开更多
Using a driving simulator,the effects of Chinese chevrons on drivers’actual and perceived safe speeds at horizontal curves on two-lane rural highways are tested. Twelve horizontal curves with different roadway geomet...Using a driving simulator,the effects of Chinese chevrons on drivers’actual and perceived safe speeds at horizontal curves on two-lane rural highways are tested. Twelve horizontal curves with different roadway geometries are designed and used as the simulated scenarios.The results show that, regardless of the curve radius, chevrons at horizontal curves provide advance warning and speed control for vehicles on the nearside of chevrons.Besides,chevrons can be used as an addition to speed limit signs in preventing excessive speed at horizontal curves and, therefore, can contribute to a reduction in run-off-road crashes.Moreover, Chinese chevrons can also serve to provide an improved sense of safety while driving around sharp curves.These study results lay a foundation for setting Chinese chevrons more reasonably.展开更多
Four-dimensional variational data assimilation (4DVar) is one of the most promising methods to provide optimal analysis for numerical weather prediction (NWP). Five national NWP centers in the world have successfu...Four-dimensional variational data assimilation (4DVar) is one of the most promising methods to provide optimal analysis for numerical weather prediction (NWP). Five national NWP centers in the world have successfully applied 4DVar methods in their global NWPs, thanks to the increment method and adjoint technique. However, the application of 4DVar is still limited by the computer resources available at many NWP centers and research institutes. It is essential, therefore, to further reduce the computational cost of 4DVar. Here, an economical approach to implement 4DVar is proposed, using the technique of dimension- reduced projection (DRP), which is called "DRP-4DVar." The proposed approach is based on dimension reduction using an ensemble of historical samples to define a subspace. It directly obtains an optimal solution in the reduced space by fitting observations with historical time series generated by the model to form consistent forecast states, and therefore does not require implementation of the adjoint of tangent linear approximation. To evaluate the performance of the DRP-4DVar on assimilating different types of mesoscale observations, some observing system simulation experiments are conducted using MM5 and a comparison is made between adjoint-based 4DVar and DRP-4DVar using a 6-hour assimilation window.展开更多
Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fr...Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fracturing stimulation. Laboratory hydraulic fracturing experiments were conducted on coal blocks under true tri-axial stress to simulate fracturing stimulation of coal seams. Fractures were initiated by injecting a water gel with luminous yellow fluorescent dye into an open hole section of a wellbore. The impact of cleats on initiation and propagation of hydraulic fractures in coal seams is discussed. Three types of hydraulic fracture initiation and propagation pattern were observed in this study: 1) The hydraulic fracture initiated and then grew along the cleat. 2) The hydraulic fracture initiated along a butt cleat or a fracture (natural or induced by drilling) oriented roughly in the minimum horizontal stress direction, then turned to propagate along the first face cleat that it encountered or gradually turned towards the maximum horizontal stress direction. 3) The hydraulic fracture initiated perpendicular to the minimum stress and, when it encountered a face cleat, tended to propagate along the cleats if the extension direction does not deviate greatly (〈20° as determined in this paper) from the maximum horizontal stress direction. When a coal seam is hydraulically fractured, the resulting fracture network is controlled by the combined effect of several factors: cleats determine the initiation and extension path of the fracture, the in-situ stress state dominates the main direction of the fracture zone and bedding planes impede fracture height growth.展开更多
The mechanism of fracture initiation is the basic issue for hydraulic fracture technology. Because of the huge differences in fracture initiation mechanisms for different reservoirs,some successful fracturing techniqu...The mechanism of fracture initiation is the basic issue for hydraulic fracture technology. Because of the huge differences in fracture initiation mechanisms for different reservoirs,some successful fracturing techniques applied to porosity reservoirs are ineffectual for fractured reservoirs.Laboratory tests using a process simulation device were performed to confirm the characteristics of fracture initiation and propagation in different reservoirs.The influences of crustal stress field,confining pressure,and natural fractures on the fracture initiation and propagation are discussed.Experimental results demonstrate that stress concentration around the hole would significantly increase the fracture pressure of the rock.At the same time,natural fractures in the borehole wall would eliminate the stress concentration,which leads to a decrease in the fracture initiation pressure.展开更多
Almost all intraplate caprocks experienced strong deformation during the convergence of microplates, and then disintegrated into many secondary geologic units with the special characters, such as irregular boundaries ...Almost all intraplate caprocks experienced strong deformation during the convergence of microplates, and then disintegrated into many secondary geologic units with the special characters, such as irregular boundaries and particular structural assemblages. In order to understand the formation mechanism of these special phenomena, a rheological experiment on the structural scenery of the Tongling area is carried out. The result shows that the primary regular and uniform boundaries of the Tongling area becomes irregular because of the enclosing and confinement of surrounding geological units in the process of 'compression-shearing-rotation-drag'; simultaneously, two specific 'drag depressions' developed at two opposite corners of the block. The former and the later phenomena can be regarded as a typical regional-scale rheological effect and necessary outcome of intraplate deformation respectively.展开更多
Soil cracking is an important process influencing water and solutes transport in the Yuanmou Dry-hot Valley region of Southwest China. Studying the morphological development of soil cracks helps to further reveal the ...Soil cracking is an important process influencing water and solutes transport in the Yuanmou Dry-hot Valley region of Southwest China. Studying the morphological development of soil cracks helps to further reveal the close relationship between the soil cracking process and water movement in such semi-arid regions. Here we report regular changes on surface morphology of soil cracks with decreasing water in four different soils (Typ-Ustic Ferrisols,Ver-Ustic Ferrisols,Tru-Ustic Vertisols and Typ-Ustic Vertisols) through simulation experiments. Our results indicate the following: 1) Different soils ultimately have different development degrees of soil cracks,according to their various values of crack area density. Soil cracks in Typ-Ustic Ferrisols can only develop to the feeble degree,while those in the other three soils are capable of developing into the intensive degree,and even into the extremely intensive degree. 2) Soil crack complexity,as expressed by the value of the area-weighted mean of crack fractal dimension (AWMFRAC),is found to continuously decrease as a whole through the whole cracking process in all the studied soils. 3) Soil crack connectivity shows a uniform trend in the studied soils,that is to say,connectivity gradually increases with soil crack development.展开更多
This paper presents a fusion control strategy of adaptive cruise control(ACC) and collision avoidance(CA),which takes into account a driver’s behavioral style. First, a questionnaire survey was performed to identify ...This paper presents a fusion control strategy of adaptive cruise control(ACC) and collision avoidance(CA),which takes into account a driver’s behavioral style. First, a questionnaire survey was performed to identify driver type, and the corresponding driving behavioral data were collected via driving simulator experiments, which served as the template data for the online identification of driver type. Then, the driveradaptive ACC/CA fusion control strategy was designed, and its effect was verified by virtual experiments. The results indicate that the proposed control strategy could achieve the fusion control of ACC and CA successfully and improve driver adaptability and comfort.展开更多
It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation const...It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation construction. Firstly, reinforced concrete domestic architectures in mountain areas of western China had been chosen as main architecture style. The bearing load style and the destructed shape of reinforced flamed construction impacted by discontinuous viscous debris flow were studied systematically. Secondly, Jiangjia Ravine debris flow valley in Yunnan Province, China had been chosen as research region. Utilizing based data from fieldwork and practical survey, the authors simulated and calculated theoretically impact force of discontinuous viscous debris flow. Thirdly, an impact data collecting system (IMHE IDCS) was designed and developed to fulfill designed simulation experiments. Finally, a series of impact test of researched structure models had been fulfilled. During experiment, the destructed shape and course of models were observed and the dynamic displacement data and main natural frequency data of models were collected and analyzed.展开更多
Experiments simulating the effect of coal mine stopping through a fault zone were designed based on a working face of the Qianqiu coal mine in Yima, China. Through simulation of the physical process of fault reactivat...Experiments simulating the effect of coal mine stopping through a fault zone were designed based on a working face of the Qianqiu coal mine in Yima, China. Through simulation of the physical process of fault reactivation and coal bumps, the displacement of the surrounding strata and evolution characteristics of fault stress under the effect of mining were studied. The mechanism of fault reactivation induced by coal mining was analyzed. The results show that shortly before fault reactiva- tion, the normal stress and shear stress increased rapidly and the risk of a fault slip occurring was also increased. The fault reac- tivation, caused by the mining activity, occurred when the working face was 25-35 m from the fault along the hanging wall. The influence of mining increased the possibility of fault reactivation, while the local failure of the bearing capacity of the working face was the direct cause of the fault slip. Our results indicate that the influence of fault slip on the coal of the working face had a transient impact and acted as a loading-unloading function.展开更多
The purpose of this study is to investigate the entire evolution process of shales with various total organic contents(TOC)in order to build models for quantitative evaluation of oil and gas yields and establish metho...The purpose of this study is to investigate the entire evolution process of shales with various total organic contents(TOC)in order to build models for quantitative evaluation of oil and gas yields and establish methods for assessing recoverable oil and gas resources from in-situ conversion of organic matters in shale.Thermal simulation experiments under in-situ conversion conditions were conducted on Chang 7_(3) shales from the Ordos Basin in a semi-open system with large capacity.The results showed that TOC and R_(o) were the key factors affecting the in-situ transformation potential of shale.The remaining oil and gas yields increased linearly with TOC but inconsistently with R_(o).R_(o) ranged 0.75%—1.25%and 1.05%—2.3%,respectively,corresponding to the main oil generation stage and gas generation stage of shale in-situ transformation.Thus a model to evaluate the remaining oil/gas yield with TOC and R_(o) was obtained.The TOC of shale suitable for in-situ conversion should be greater than 6%,whereas its R_(o) should be less than 1.0%.Shales with 0.75%(R_(o))could obtain the best economic benefit.The results provided a theoretical basis and evaluation methodology for predicting the hydrocarbon resources from in-situ conversion of shale and for the identification of the optimum“sweet spots”.The assessment of the Chang 7_(3) shale in the Ordos Basin indicated that the recoverable oil and gas resources from in-situ conversion of organic matters in shale are substantial,with oil and gas resources reaching approximately 450×10^(8) t and 30×10^(12)m^(3),respectively,from an area of 4.27×10^(4) km^(2).展开更多
In order to contrast the hydrocarbon generation kinetic characteristics from different types of organic matter(OM),18 samples from different basins were pyrolyzed using Rock-Eval-Ⅱapparatus under the open system.Fr...In order to contrast the hydrocarbon generation kinetic characteristics from different types of organic matter(OM),18 samples from different basins were pyrolyzed using Rock-Eval-Ⅱapparatus under the open system.From the experimental results,the curve of hydrocarbon generation rate vs.temperature can be easily obtained,which usually can be used to optimize kinetic parameters (A,E,F)of the hydrocarbon generation model.In this paper,the parallel first-order reaction with a single frequency factor model is selected to describe the hydrocarbon generation kinetic characteristics. The hydrocarbon generation kinetic parameters reveal that the types of compound structures and chemical bonds of the lacustrine fades typeⅠOM are relatively homogeneous,with one dominating activation energy.The types of chemical bonds of the lacustrine facies typeⅡ2 OM and the terrestrial facies typeⅢOM are relative complex,with a broad activation energy distribution,and the reaction fraction of the preponderant activation energy drops with the decrease of hydrogen index.The impact of the activation energy distribution spaces on the geological extrapolation of kinetic parameters is also investigated.The results show that it has little effect on the hydrocarbon transformation ratio(TR)and therefore,the parallel first-order reaction model with proper number of activation energies can be better used to describe the hydrocarbon generation process.The geological extrapolation results of 18 samples of kinetic parameters show that the distribution range of the hydrocarbon generation rate of the typeⅠOM is relatively narrow and the hydrocarbon generation curve is smooth.In comparison,the distribution range of the hydrocarbon generation for typeⅢand typeⅡ2-ⅢOM are quite wide,and the hydrocarbon generation curves have fluctuation phenomena.The distribution range of the hydrocarbon generation rate and the fluctuation phenomena are related to the kinetic parameters of OM;the narrower the activation energy distribution,the narrower the hydrocarbon generation rate distribution,and the smoother the hydrocarbon generation curve,and vice versa.展开更多
基金the National Science Foundation.USA.(NSF Grant EAR 02-10820)the National Natural ScienceFoundation of China(NSFC Grant No.40173031)+1 种基金the International Cooperative Research Foundation of NSFC(Grant No.2002-40210104086) the Ph.D.Base Foundation of the Ministry of Education of China(Grant No.20020284036).
文摘A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were: 35°C, pH=7.0-7.4, corresponding to the environments of formation of the sandstone-hosted interlayer oxidation-zone type uranium deposits in Xinjiang, NW China. Uraninite was formed on the surface of the host bacteria after a one-week's incubation. Therefore, sulfate-reducing bacteria, which existed extensively in Jurassic sandstone-producing environments, might have participated in the biomineralization of this uranium deposit. There is an important difference in the order- disorder of the crystalline structure between the uraninite produced by Desulfovibrio desulfuricans and naturally occurring uraninite. Long time and slow precipitation and growth of uraninite in the geological environment might have resulted in larger uraninite crystals, with uraninite nanocrystals arranged in order, whereas the experimentally produced uraninite is composed of unordered uraninite nanocrystals which, in contrast, result from the short time span of formation and rapid precipitation and growth of uraninite. The discovery has important implications for understanding genetic significance in mineralogy, and also indicates that in-situ bioremediation of U-contaminated environments and use of biotechnology in the treatment of radioactive liquid waste is being contemplated.
基金This research was supported by the Major Scientific and Technological Projects of CNPC under grant ZD2019-183-006the National Natural Science Foundation of China(42072234).The authors would like to appreciate all the people,who supported the data,testing,and analyses.Many thanks to the anonymous reviewers,whose comments improve the quality of our manuscript.
文摘A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ.
基金Supported by National Natural Science Foundation Joint Fund Project(NO.U21B2071)National Natural Science Youth Foundation of China(NO.52304041)。
文摘In response to the unclear understanding of fracture propagation and intersection interference in zipper fracturing under the factory development model of deep shale gas wells,a coupled hydro-mechanical model for zipper fracturing considering the influence of natural fracture zones was established based on the finite element–discrete element method.The reliability of the model was verified using experimental data and field monitoring pressure increase data.Taking the deep shale gas reservoir in southern Sichuan as an example,the propagation and interference laws of fracturing fractures under the influence of natural fracture zones with different characteristics were studied.The results show that the large approaching angle fracture zone has a blocking effect on the forward propagation of fracturing fractures and the intersection of inter well fractures.During pump shutdown,hydraulic fractures exhibit continued expansion behavior under net pressure driving.Under high stress difference,as the approaching angle of the fracture zone increases,the response well pressure increase and the total length of the fractured fracture show a trend of first decreasing and then increasing,and first increasing and then decreasing,respectively.Compared to small approach angle fracture zones,natural fracture zones with large approach angles require longer time and have greater difficulty to intersect.The width of fractures and the length of natural fractures are negatively and positively correlated with the response well pressure increase,respectively,and positively and negatively correlated with the time required for intersection,the total length of hydraulic fractures,and fracturing efficiency,respectively.As the displacement distance of the well increases,the probability of fracture intersection decreases,but the regularity between displacement distance and the response well pressure increase and the total length of fractures is not obvious.
基金National Key R&D Program of China(2023YFC3009100,2023YFC3009102)National Natural Science Foundation of China(52304198)Open Fund of the National and Local Joint Engineering Research Center for Safe and Accurate Coal Mining(EC2021016).
文摘This study employs similar simulation testing and discrete element simulation coupling to analyze the failure and deformation processes of a model coal seam's roof.The caving area of the overburden rock is divided into three zones:the delamination fracture zone,broken fracture zone,and compaction zone.The caving and fracture zones'heights are approximately 110 m above the coal seam,with a maximum subsidence of 11 m.The delamination fracture zone's porosity range is between 0.2 and 0.3,while the remainder of the roof predominantly exhibits a porosity of less than 0.1.In addition,the numerical model's stress analysis revealed that the overburden rock's displacement zone forms an'arch-beam'structure starting from 160 m,with the maximum and minimum stress values decreasing as the distance of advancement increases.In the stress beam interval of the overburden rock,the maximum value changes periodically as the advancement distance increases.Based on a comparative analysis between observable data from on-site work and numerical simulation results,the stress data from the numerical simulation are essentially consistent with the actual results detected on-site,indicating the validity of the numerical simulation results.
基金supported by National Natural Science Foundation(52204050)Sichuan Science and Technology Program(2021ZHCG0013,22ZDYF3009)。
文摘Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.
基金National Innovation and Entrepreneurship Program for College Students(202218213001)Science and Technology Innovation Strategy of Guangdong Province(Science and Technology Innovation Cultivation of University Students 2020329182130C000002).
文摘Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.
基金Chongqing Institute of Technology’s 2022 Virtual Simulation Experiment“Golden Course”Construction Project“Virtual Simulation Experiment of Urban Overpass Vehicle Passage”2023 Teaching Method Reform and“Information Technology+”Smart Teaching Special Research Project Information Technology Multi-Dimensional Research Results of“Enabling Virtual Simulation Experiment Smart Teaching Reform and Practice”。
文摘Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has a long construction period,is highly dangerous,and is difficult to experiment with.In order to solve the contradiction between the traditional theory teaching of civil engineering and the engineering training of students,the construction of virtual simulation experimental teaching courses with a high degree of realism,intuition,and accuracy can be used as a useful supplement and innovation of experimental and practical teaching.This paper takes the virtual simulation experimental teaching course of urban overpasses as an example,introduces the necessity and practicability of the course construction,and describes the experimental principle structure of the course,the simulation scene design,the experimental teaching process,the experimental method,etc.The course has achieved good application results,and it has been recognized as the first-class virtual simulation teaching course of the Chongqing Municipal Government,which provides certain references to the construction of the same type of courses in the civil engineering profession.
文摘All engineering students need to develop their important skills of leadership in project management. Many students have never been leaders in their social and school lives. A leading role is unimaginable to them and hence they cannot imagine how to achieve it. The purpose of this paper is to report a result of a new leadership education program which links a variety of simulated experiences with real actions of students in project based learning (PBL) to develop their leadership ability. The first step is for graduate students to gain knowledge in the leadership arena. Then, they utilize simulation to experience leadership actions many times. Simulation provides a safe environment in which they can try out many different approaches in taking leadership in various situations. In the next step, students as a team utilize PBL, so that the above simulated experiences can help them to actually take leadership. Students can apply trained leadership to actual projects. It is highly effective to apply conscious leadership to a project aimed at a specific goal in limited circumstances. This education repeats both of the steps above, raising leadership abilities in an upward spiral. In terms of students' evaluation of leadership education in project management, 360-degree assessments were carried out by teachers, senior, and junior students before and after the course, and authors compare their assessments thoroughly. As a result, authors are assured that students not only gained knowledge but also raised leadership abilities in their actions after this education. Six months after the time of leadership education employing simulated experiences and PBL, follow-up interviews were conducted on its effects. Authors recognized the cyclic period that students apply simulated experiences to PBL and that they seek different approaches in simulation for solving problems found in reality. This research concludes that this cycle of simulator and PBL can produce effective leadership actions.
文摘<div style="text-align:justify;"> The purpose of this study is to prevent the occurrence of falls by defining the symptoms of falls and detecting them in advance. The focus of the study is on the specific definition of “Falling Symptoms”. In this regard, we conducted a questionnaire survey on people of different ages to obtain the state of themselves and their surroundings when they fell down. In addition, we used the elderly simulated experience kit to achieve the purpose of using young people to replace the elderly. Young people were asked to walk on different roads in different shoes with and without elderly simulated experience kit and photographed them with a high-speed camera to observe the changes of their muscles and joints. We also simulated the movement of center of gravity of the people with and without elderly simulated experience kit by a pressure distribution sensor mat. </div>
基金The National Natural Science Foundation of China(No.51108011)
文摘Using a driving simulator,the effects of Chinese chevrons on drivers’actual and perceived safe speeds at horizontal curves on two-lane rural highways are tested. Twelve horizontal curves with different roadway geometries are designed and used as the simulated scenarios.The results show that, regardless of the curve radius, chevrons at horizontal curves provide advance warning and speed control for vehicles on the nearside of chevrons.Besides,chevrons can be used as an addition to speed limit signs in preventing excessive speed at horizontal curves and, therefore, can contribute to a reduction in run-off-road crashes.Moreover, Chinese chevrons can also serve to provide an improved sense of safety while driving around sharp curves.These study results lay a foundation for setting Chinese chevrons more reasonably.
基金the Ministry of Science and Technology of China for funding the 973 project (Grant No. 2004CB418304) the Ministry of Finance of China and the China Meteorological Administration for the Special Project of Meteorological Sector [Grant No. GYHY(QX)2007-6-15]
文摘Four-dimensional variational data assimilation (4DVar) is one of the most promising methods to provide optimal analysis for numerical weather prediction (NWP). Five national NWP centers in the world have successfully applied 4DVar methods in their global NWPs, thanks to the increment method and adjoint technique. However, the application of 4DVar is still limited by the computer resources available at many NWP centers and research institutes. It is essential, therefore, to further reduce the computational cost of 4DVar. Here, an economical approach to implement 4DVar is proposed, using the technique of dimension- reduced projection (DRP), which is called "DRP-4DVar." The proposed approach is based on dimension reduction using an ensemble of historical samples to define a subspace. It directly obtains an optimal solution in the reduced space by fitting observations with historical time series generated by the model to form consistent forecast states, and therefore does not require implementation of the adjoint of tangent linear approximation. To evaluate the performance of the DRP-4DVar on assimilating different types of mesoscale observations, some observing system simulation experiments are conducted using MM5 and a comparison is made between adjoint-based 4DVar and DRP-4DVar using a 6-hour assimilation window.
基金support from the National Natural Science Foundation of China (Grant Nos. 51274216 and 51322404)
文摘Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fracturing stimulation. Laboratory hydraulic fracturing experiments were conducted on coal blocks under true tri-axial stress to simulate fracturing stimulation of coal seams. Fractures were initiated by injecting a water gel with luminous yellow fluorescent dye into an open hole section of a wellbore. The impact of cleats on initiation and propagation of hydraulic fractures in coal seams is discussed. Three types of hydraulic fracture initiation and propagation pattern were observed in this study: 1) The hydraulic fracture initiated and then grew along the cleat. 2) The hydraulic fracture initiated along a butt cleat or a fracture (natural or induced by drilling) oriented roughly in the minimum horizontal stress direction, then turned to propagate along the first face cleat that it encountered or gradually turned towards the maximum horizontal stress direction. 3) The hydraulic fracture initiated perpendicular to the minimum stress and, when it encountered a face cleat, tended to propagate along the cleats if the extension direction does not deviate greatly (〈20° as determined in this paper) from the maximum horizontal stress direction. When a coal seam is hydraulically fractured, the resulting fracture network is controlled by the combined effect of several factors: cleats determine the initiation and extension path of the fracture, the in-situ stress state dominates the main direction of the fracture zone and bedding planes impede fracture height growth.
基金supported by the National Natural Science Foundation of China(No.50974029)the Doctoral Program of the Ministry of Education(No.20070220001)Province Natural Science Foundation of Heilongjiang of China(No.E200816)
文摘The mechanism of fracture initiation is the basic issue for hydraulic fracture technology. Because of the huge differences in fracture initiation mechanisms for different reservoirs,some successful fracturing techniques applied to porosity reservoirs are ineffectual for fractured reservoirs.Laboratory tests using a process simulation device were performed to confirm the characteristics of fracture initiation and propagation in different reservoirs.The influences of crustal stress field,confining pressure,and natural fractures on the fracture initiation and propagation are discussed.Experimental results demonstrate that stress concentration around the hole would significantly increase the fracture pressure of the rock.At the same time,natural fractures in the borehole wall would eliminate the stress concentration,which leads to a decrease in the fracture initiation pressure.
文摘Almost all intraplate caprocks experienced strong deformation during the convergence of microplates, and then disintegrated into many secondary geologic units with the special characters, such as irregular boundaries and particular structural assemblages. In order to understand the formation mechanism of these special phenomena, a rheological experiment on the structural scenery of the Tongling area is carried out. The result shows that the primary regular and uniform boundaries of the Tongling area becomes irregular because of the enclosing and confinement of surrounding geological units in the process of 'compression-shearing-rotation-drag'; simultaneously, two specific 'drag depressions' developed at two opposite corners of the block. The former and the later phenomena can be regarded as a typical regional-scale rheological effect and necessary outcome of intraplate deformation respectively.
基金Under the auspices of National Natural Science Foundation of China (No. 40901009)National Key Technologies Research and Development Program in the Eleventh Five-Year Plan of China (No. 2008BAD98B02, 2006BAC01A11)+1 种基金the Western Light Program of Talents Cultivating of Chinese Academy of Sciences (2008)the Foundation of Key Laboratory of Mountain Hazards and Surface Process, Chinese Academy of Sciences
文摘Soil cracking is an important process influencing water and solutes transport in the Yuanmou Dry-hot Valley region of Southwest China. Studying the morphological development of soil cracks helps to further reveal the close relationship between the soil cracking process and water movement in such semi-arid regions. Here we report regular changes on surface morphology of soil cracks with decreasing water in four different soils (Typ-Ustic Ferrisols,Ver-Ustic Ferrisols,Tru-Ustic Vertisols and Typ-Ustic Vertisols) through simulation experiments. Our results indicate the following: 1) Different soils ultimately have different development degrees of soil cracks,according to their various values of crack area density. Soil cracks in Typ-Ustic Ferrisols can only develop to the feeble degree,while those in the other three soils are capable of developing into the intensive degree,and even into the extremely intensive degree. 2) Soil crack complexity,as expressed by the value of the area-weighted mean of crack fractal dimension (AWMFRAC),is found to continuously decrease as a whole through the whole cracking process in all the studied soils. 3) Soil crack connectivity shows a uniform trend in the studied soils,that is to say,connectivity gradually increases with soil crack development.
基金supported by the National Natural Science Foundation of China(51775178,51875049)Hunan Province Natural Science Outstanding Youth Fund(2019JJ20017)。
文摘This paper presents a fusion control strategy of adaptive cruise control(ACC) and collision avoidance(CA),which takes into account a driver’s behavioral style. First, a questionnaire survey was performed to identify driver type, and the corresponding driving behavioral data were collected via driving simulator experiments, which served as the template data for the online identification of driver type. Then, the driveradaptive ACC/CA fusion control strategy was designed, and its effect was verified by virtual experiments. The results indicate that the proposed control strategy could achieve the fusion control of ACC and CA successfully and improve driver adaptability and comfort.
基金the National Natural Science Foundation of China (40201009 and 90201007)Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
文摘It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation construction. Firstly, reinforced concrete domestic architectures in mountain areas of western China had been chosen as main architecture style. The bearing load style and the destructed shape of reinforced flamed construction impacted by discontinuous viscous debris flow were studied systematically. Secondly, Jiangjia Ravine debris flow valley in Yunnan Province, China had been chosen as research region. Utilizing based data from fieldwork and practical survey, the authors simulated and calculated theoretically impact force of discontinuous viscous debris flow. Thirdly, an impact data collecting system (IMHE IDCS) was designed and developed to fulfill designed simulation experiments. Finally, a series of impact test of researched structure models had been fulfilled. During experiment, the destructed shape and course of models were observed and the dynamic displacement data and main natural frequency data of models were collected and analyzed.
基金Supported by the Major State Basic Research Development Program Fund (2010CB226801) the National Natural Science Foundation of China (50704034) the State Key Laboratory of Coal Resources and Safe Mining Open Research Fund (SKLCRSM11KFB08)
文摘Experiments simulating the effect of coal mine stopping through a fault zone were designed based on a working face of the Qianqiu coal mine in Yima, China. Through simulation of the physical process of fault reactivation and coal bumps, the displacement of the surrounding strata and evolution characteristics of fault stress under the effect of mining were studied. The mechanism of fault reactivation induced by coal mining was analyzed. The results show that shortly before fault reactiva- tion, the normal stress and shear stress increased rapidly and the risk of a fault slip occurring was also increased. The fault reac- tivation, caused by the mining activity, occurred when the working face was 25-35 m from the fault along the hanging wall. The influence of mining increased the possibility of fault reactivation, while the local failure of the bearing capacity of the working face was the direct cause of the fault slip. Our results indicate that the influence of fault slip on the coal of the working face had a transient impact and acted as a loading-unloading function.
基金supported by PetroChina Co Ltd.(Grant number:2015D-4810-02,2018YCQ03,2021DJ52)National Natural Science Foundation of China(Grant number:42172170)
文摘The purpose of this study is to investigate the entire evolution process of shales with various total organic contents(TOC)in order to build models for quantitative evaluation of oil and gas yields and establish methods for assessing recoverable oil and gas resources from in-situ conversion of organic matters in shale.Thermal simulation experiments under in-situ conversion conditions were conducted on Chang 7_(3) shales from the Ordos Basin in a semi-open system with large capacity.The results showed that TOC and R_(o) were the key factors affecting the in-situ transformation potential of shale.The remaining oil and gas yields increased linearly with TOC but inconsistently with R_(o).R_(o) ranged 0.75%—1.25%and 1.05%—2.3%,respectively,corresponding to the main oil generation stage and gas generation stage of shale in-situ transformation.Thus a model to evaluate the remaining oil/gas yield with TOC and R_(o) was obtained.The TOC of shale suitable for in-situ conversion should be greater than 6%,whereas its R_(o) should be less than 1.0%.Shales with 0.75%(R_(o))could obtain the best economic benefit.The results provided a theoretical basis and evaluation methodology for predicting the hydrocarbon resources from in-situ conversion of shale and for the identification of the optimum“sweet spots”.The assessment of the Chang 7_(3) shale in the Ordos Basin indicated that the recoverable oil and gas resources from in-situ conversion of organic matters in shale are substantial,with oil and gas resources reaching approximately 450×10^(8) t and 30×10^(12)m^(3),respectively,from an area of 4.27×10^(4) km^(2).
基金supported by grants from the National Key Basic Research and Development Program(Grant 2006CB202307 and 2009CB219306)the Natural Science Foundation of China(40972101)the Major National Science and Technology Programs(2008ZX05007- 001,2008ZX05004-003)
文摘In order to contrast the hydrocarbon generation kinetic characteristics from different types of organic matter(OM),18 samples from different basins were pyrolyzed using Rock-Eval-Ⅱapparatus under the open system.From the experimental results,the curve of hydrocarbon generation rate vs.temperature can be easily obtained,which usually can be used to optimize kinetic parameters (A,E,F)of the hydrocarbon generation model.In this paper,the parallel first-order reaction with a single frequency factor model is selected to describe the hydrocarbon generation kinetic characteristics. The hydrocarbon generation kinetic parameters reveal that the types of compound structures and chemical bonds of the lacustrine fades typeⅠOM are relatively homogeneous,with one dominating activation energy.The types of chemical bonds of the lacustrine facies typeⅡ2 OM and the terrestrial facies typeⅢOM are relative complex,with a broad activation energy distribution,and the reaction fraction of the preponderant activation energy drops with the decrease of hydrogen index.The impact of the activation energy distribution spaces on the geological extrapolation of kinetic parameters is also investigated.The results show that it has little effect on the hydrocarbon transformation ratio(TR)and therefore,the parallel first-order reaction model with proper number of activation energies can be better used to describe the hydrocarbon generation process.The geological extrapolation results of 18 samples of kinetic parameters show that the distribution range of the hydrocarbon generation rate of the typeⅠOM is relatively narrow and the hydrocarbon generation curve is smooth.In comparison,the distribution range of the hydrocarbon generation for typeⅢand typeⅡ2-ⅢOM are quite wide,and the hydrocarbon generation curves have fluctuation phenomena.The distribution range of the hydrocarbon generation rate and the fluctuation phenomena are related to the kinetic parameters of OM;the narrower the activation energy distribution,the narrower the hydrocarbon generation rate distribution,and the smoother the hydrocarbon generation curve,and vice versa.