With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as ...With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.展开更多
Widespread implementation of electronic health records has led to the increased use of artificial intelligence(AI)and computer modeling in clinical medicine.The early recognition and treatment of critical illness are ...Widespread implementation of electronic health records has led to the increased use of artificial intelligence(AI)and computer modeling in clinical medicine.The early recognition and treatment of critical illness are central to good outcomes but are made difficult by,among other things,the complexity of the environment and the often non-specific nature of the clinical presentation.Increasingly,AI applications are being proposed as decision supports for busy or distracted clinicians,to address this challenge.Data driven“associative”AI models are built from retrospective data registries with missing data and imprecise timing.Associative AI models lack transparency,often ignore causal mechanisms,and,while potentially useful in improved prognostication,have thus far had limited clinical applicability.To be clinically useful,AI tools need to provide bedside clinicians with actionable knowledge.Explicitly addressing causal mechanisms not only increases validity and replicability of the model,but also adds transparency and helps gain trust from the bedside clinicians for real world use of AI models in teaching and patient care.展开更多
The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parame...The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parameters. In this paper, we define parameter combinatorial diagram as the joint graphical representation of all box plots related to the adjustment between real and simulated data, by setting and/or changing the parameters of the simulation model. To do this, we start with a box plot representing the values of an objective adjustment function, achieving these results when varying all the parameters of the simulation model, Then we draw the box plot when setting all the parameters of the model, for example, using the median or average. Later, we get all the box plots when carrying out simulations combining fixed or variable values of the model parameters. Finally, all box plots obtained are represented neatly in a single graph. It is intended that the new parameter combinatorial diagram is used to examine and analyze simulation models useful in practice. This paper presents combinatorial diagrams of different examples of application as in the case of hydrologic models of one, two, three, and five parameters.展开更多
Computer simulation models may by used to gain further information about missile performance variability. Model validation is an important aspect of the test program for a missile system. Validation provides a basis f...Computer simulation models may by used to gain further information about missile performance variability. Model validation is an important aspect of the test program for a missile system. Validation provides a basis for confidence in the model's results and is a necessary step if the model is to be used to draw inference about the behavior of the real missile. This paper is a review of methods useful for validation of computer simulation models of missile systems and provides a new method with high degree of confidence for validation of computer simulation models of missile systems. Some examples of the use of the new method in validating computer simulation models are given.展开更多
There is a close relationship between agricultural production and environmental meteorological conditions. In the study of the correlation between them, the simulation models are paid more attention to the crop growth...There is a close relationship between agricultural production and environmental meteorological conditions. In the study of the correlation between them, the simulation models are paid more attention to the crop growth. In this paper the development of the studies on the crop growth dynamic simulation model in China is briefly reviewed. The relationships between meteorological conditions and each process of crop growth (such as photosynthesis, respiration, accumulation and distribution of assimilation products and growth of leaf area) are studied and simulated basing on the results from field experiments. Preliminary models for rice, wheat, maize and soybean have been developed, and some investigations about modelling methods, procedures and parameters in simulation models are made.展开更多
Automotive manufacturing is complex and includes the coordination of design in the manufacturing system. The manufacturing approaches over the past few years, disassembly have been a key issue, and it seems that simul...Automotive manufacturing is complex and includes the coordination of design in the manufacturing system. The manufacturing approaches over the past few years, disassembly have been a key issue, and it seems that simulation models are usually tailored to address a narrow set of industrial issues. This paper describes the development of the production line in the automobile manufacturing system through design, operation, and maintenance, based on multi-objectives of Algorithm and Simulation Model called MOA-SM. The both models are being developed at three different levels: the production line in the body and assembly shop, supply chain, and the production plan. The optimization tries to involve more objectives to solve the issues in manufacturing system. A solution that may optimize one performance measure may deteriorate since other performance solutions are difficult. The resulting algorithms are comparable to the simulation and multi-object in terms of success rate, assembly times, peak forces, moments, and have assembly times superior to those of a benchmark blind search algorithm.展开更多
Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence...Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence for the implementation of advanced teaching models in future nursing education. Methods: Enrolled 60 nurses who took the IV infusion therapy training program in our hospital from January 2022 to December 2023 for research. 30 nurses who were trained in traditional teaching models from January to December 2022 were selected as the control group, and 30 nurses who were trained with simulation-based teaching models with methods including simulated patients, internet, online meetings which can be replayed and scenario simulation, etc. from January to December 2023 were selected as the experimental group. Evaluated the learning outcomes based on the Competency Inventory for Nursing Students (CINS), Problem-Solving Inventory (PSI), comprehensive learning ability, scientific research ability, and proficiency in the theoretical knowledge and practical skills of IV infusion therapy. Nursing quality, the incidence of IV infusion therapy complications and nurse satisfaction with different teaching models were also measured. Results: The scientific research ability, PSI scores, CINS scores, and comprehensive learning ability of the experimental group were better than those of the control group (P 0.05), and their assessment results of practical skills, nursing quality of IV infusion therapy during training, and satisfaction with teaching models were all better than those of the control group with statistical significance (P < 0.05). The incidence of IV infusion therapy complications in the experimental group was lower than that in the control group, indicating statistical significance (P < 0.05). Conclusions: Teaching models based on patient simulators combined with Internet Plus scenario simulation enable nursing students to learn more directly and practice at any time and in any place, and can improve their proficiency in IV infusion theoretical knowledge and skills (e.g. PICC catheterization), core competencies, problem-solving ability, comprehensive learning ability, scientific research ability and the ability to deal with complicated cases. Also, it helps provide high-quality nursing education, improve the nursing quality of IV therapy, reduce the incidence of related complications, and ensure the safety of patients with IV therapy.展开更多
The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction...The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction selectivities toward water matrices and degradation efficiencies for target micropollutants.Hence,process selection and optimization are crucial.This study developed a facilitated prediction method for the photon fluence-based rate constant for micropollutant degradation(K′_(p,MP))in various UV-AOPs by combining model simulation with portable measurement.Portable methods for measuring the scavenging capacities of the principal RRs(RRSCs)involved in UV-AOPs(i.e.,HO^(·),SO_(4)^(·-),and Cl^(·))using a mini-fluidic photoreaction system were proposed.The simulation models consisted of photochemical,quantitative structure–activity relationship,and radical concentration steady-state approximation models.The RRSCs were determined in eight test waters,and a higher RRSC was found to be associated with a more complex water matrix.Then,by taking sulfamethazine,caffeine,and carbamazepine as model micropollutants,the k′_(p,MP) values in various UV-AOPs were predicted and further verified experimentally.A lower k′_(p,MP) was found to be associated with a higher RRSC for a stronger RR competition;for example,k′_(p,MP) values of 130.9 and 332.5 m^(2) einstein^(–1),respectively,were obtained for carbamazepine degradation by UV/H_(2)O_(2) in the raw water(RRSC=9.47×10^(4) s^(-1))and sand-filtered effluent(RRSC=2.87×10^(4) s^(-1))of a drinking water treatment plant.The developed method facilitates process selection and optimization for UV-AOPs,which is essential for increasing the efficiency and cost-effectiveness of water treatment.展开更多
In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environ...In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.展开更多
Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to i...Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.展开更多
The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holisti...The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.展开更多
As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem ...As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem service value(ESV).Based on the patterns of land use change and the ESV change in Su-Xi-Chang metropolitan area from 2000 to 2020,we set up four scenarios:natural development scenario,urban development scenario,arable land protection scenario and ecological protection scenario,and simulated the impact of land use changes on the ESV in these scenarios.The results showed that:1) the area of built-up land in the Su-XiChang metropolitan area increased significantly from 2000 to 2020,and the area of other types of land decreased.Arable land underwent the highest transfer-out area,and was primarily converted into built-up land.The total ESV of Su-Xi-Chang metropolitan area increased initially then declined from 2000–2020,and the value of almost all individual ecosystem services decreased.2) Population density,GDP per area,night lighting intensity,and road network density can negatively impact the ESV.3) The total ESV loss under the natural development and urban development scenarios was high,and the expansion of the built-up land and the drastic shrinkage of the arable land contributed to the ESV decline under both scenarios.The total ESV under arable land protection and ecological protection scenarios increases,and therefore these scenarios are suitable for future land use optimization in Su-Xi-Chang.This study could provide a certain reference for land use planning and allocation,and offer guidance for the rational allocation of land resources.展开更多
Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover chang...Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions.展开更多
In the R&D phase of Gravity-1(YL-1), a multi-domain modeling and simulation technology based on Modelica language was introduced, which was a recent attempt in the practice of modeling and simulation method for la...In the R&D phase of Gravity-1(YL-1), a multi-domain modeling and simulation technology based on Modelica language was introduced, which was a recent attempt in the practice of modeling and simulation method for launch vehicles in China. It realizes a complex coupling model within a unified model for different domains, so that technologists can work on one model. It ensured the success of YL-1 first launch mission, supports rapid iteration, full validation, and tight design collaboration.展开更多
This study introduces an innovative approach by integrating AnyLogic simulation into emergency evacuation strategies to enhance security protocols.The research focuses on leveraging advanced computational models to si...This study introduces an innovative approach by integrating AnyLogic simulation into emergency evacuation strategies to enhance security protocols.The research focuses on leveraging advanced computational models to simulate and optimize evacuation scenarios in various settings,including public venues,residential areas,and urban environments.By integrating real-world data and behavioral models,the simulation accurately represents human movements,decision-making processes,and traffic flow dynamics during evacuation scenarios.The study evaluates the effectiveness of various evacuation strategies,including route planning,crowd behavior,and emergency response coordination,using a scenario-driven approach within the AnyLogic simulation environment.Furthermore,this research contributes to the establishment of optimized emergency response protocols by systematically evaluating and refining evacuation plans.The research frameworks mentioned in the research imply the efficient use of the AnyLogic simulation model to be used in different sectors and fields to enhance the strategies for saving lives and implementing an efficient evacuation management system.展开更多
We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. S...We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.展开更多
In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ...In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.展开更多
Modeling and simulation(M&S)play a critical role in both engineering and basic research processes.Computer-based models have existed since the 1950s,and those early models have given way to the more complex comput...Modeling and simulation(M&S)play a critical role in both engineering and basic research processes.Computer-based models have existed since the 1950s,and those early models have given way to the more complex computational and physics-based simula-tions used today.As such,a great deal of research has been done to establish what level of trust should be given to simulation outputs and how to verify and validate the mod-els used in these simulations.This paper presents an overview of the theoretical work done to date defining formal definitions for,and methods of,verification and validation(V&V)of computer models.Simulation models are broken down into three broad cate-gories:analytical and simulation models,computational and physics-based models,and simulations of autonomous systems,and the unique theories and methods developed to address V&V of these models are presented.This paper also presents the current prob-lems in the theoretical field of V&V for models as simulations move from single system models and simulations to more complex simulation tools.In particular,this paper high-lights the lack of agreed-upon methods for V&V of simulations of autonomous systems,such as an autonomous unmanned vehicles,and proposes some next steps needed to address this problem.展开更多
Geospatial simulation models can help us understand the dynamic aspects of Digital Earth.To implement high-performance simulation models for complex geospatial problems,grid computing and cloud computing are two promi...Geospatial simulation models can help us understand the dynamic aspects of Digital Earth.To implement high-performance simulation models for complex geospatial problems,grid computing and cloud computing are two promising computational frameworks.This research compares the benefits and drawbacks of both in Web-based frameworks by testing a parallel Geographic Information System(GIS)simulation model(Schelling’s residential segregation model).The parallel GIS simulation model was tested on XSEDE(a representative grid computing platform)and Amazon EC2(a representative cloud computing platform).The test results demonstrate that cloud computing platforms can provide almost the same parallel computing capability as high-end grid computing frameworks.However,cloud computing resources are more accessible to individual scientists,easier to request and set up,and have more scalable software architecture for on-demand and dedicated Web services.These advantages may attract more geospatial scientists to utilize cloud computing for the development of Digital Earth simulation models in the future.展开更多
With the development of science and technology, great changes have taken place in medical education, making it increasingly complicated and diversified. For medical students who have just finished basic medicine cours...With the development of science and technology, great changes have taken place in medical education, making it increasingly complicated and diversified. For medical students who have just finished basic medicine courses and are preparing for their hospital internships, it is difficult to gain experience performing direct physical examinations on patients. Currently, residents' clinical skills are assessed very strictly; simply taking notes and reciting facts will not suffice. Because considerable attention is being paid to medical students" clinical skills on a national level,展开更多
基金Aeronautical Science Foundation of China (2006ZA51004)
文摘With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.
文摘Widespread implementation of electronic health records has led to the increased use of artificial intelligence(AI)and computer modeling in clinical medicine.The early recognition and treatment of critical illness are central to good outcomes but are made difficult by,among other things,the complexity of the environment and the often non-specific nature of the clinical presentation.Increasingly,AI applications are being proposed as decision supports for busy or distracted clinicians,to address this challenge.Data driven“associative”AI models are built from retrospective data registries with missing data and imprecise timing.Associative AI models lack transparency,often ignore causal mechanisms,and,while potentially useful in improved prognostication,have thus far had limited clinical applicability.To be clinically useful,AI tools need to provide bedside clinicians with actionable knowledge.Explicitly addressing causal mechanisms not only increases validity and replicability of the model,but also adds transparency and helps gain trust from the bedside clinicians for real world use of AI models in teaching and patient care.
文摘The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parameters. In this paper, we define parameter combinatorial diagram as the joint graphical representation of all box plots related to the adjustment between real and simulated data, by setting and/or changing the parameters of the simulation model. To do this, we start with a box plot representing the values of an objective adjustment function, achieving these results when varying all the parameters of the simulation model, Then we draw the box plot when setting all the parameters of the model, for example, using the median or average. Later, we get all the box plots when carrying out simulations combining fixed or variable values of the model parameters. Finally, all box plots obtained are represented neatly in a single graph. It is intended that the new parameter combinatorial diagram is used to examine and analyze simulation models useful in practice. This paper presents combinatorial diagrams of different examples of application as in the case of hydrologic models of one, two, three, and five parameters.
文摘Computer simulation models may by used to gain further information about missile performance variability. Model validation is an important aspect of the test program for a missile system. Validation provides a basis for confidence in the model's results and is a necessary step if the model is to be used to draw inference about the behavior of the real missile. This paper is a review of methods useful for validation of computer simulation models of missile systems and provides a new method with high degree of confidence for validation of computer simulation models of missile systems. Some examples of the use of the new method in validating computer simulation models are given.
文摘There is a close relationship between agricultural production and environmental meteorological conditions. In the study of the correlation between them, the simulation models are paid more attention to the crop growth. In this paper the development of the studies on the crop growth dynamic simulation model in China is briefly reviewed. The relationships between meteorological conditions and each process of crop growth (such as photosynthesis, respiration, accumulation and distribution of assimilation products and growth of leaf area) are studied and simulated basing on the results from field experiments. Preliminary models for rice, wheat, maize and soybean have been developed, and some investigations about modelling methods, procedures and parameters in simulation models are made.
文摘Automotive manufacturing is complex and includes the coordination of design in the manufacturing system. The manufacturing approaches over the past few years, disassembly have been a key issue, and it seems that simulation models are usually tailored to address a narrow set of industrial issues. This paper describes the development of the production line in the automobile manufacturing system through design, operation, and maintenance, based on multi-objectives of Algorithm and Simulation Model called MOA-SM. The both models are being developed at three different levels: the production line in the body and assembly shop, supply chain, and the production plan. The optimization tries to involve more objectives to solve the issues in manufacturing system. A solution that may optimize one performance measure may deteriorate since other performance solutions are difficult. The resulting algorithms are comparable to the simulation and multi-object in terms of success rate, assembly times, peak forces, moments, and have assembly times superior to those of a benchmark blind search algorithm.
文摘Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence for the implementation of advanced teaching models in future nursing education. Methods: Enrolled 60 nurses who took the IV infusion therapy training program in our hospital from January 2022 to December 2023 for research. 30 nurses who were trained in traditional teaching models from January to December 2022 were selected as the control group, and 30 nurses who were trained with simulation-based teaching models with methods including simulated patients, internet, online meetings which can be replayed and scenario simulation, etc. from January to December 2023 were selected as the experimental group. Evaluated the learning outcomes based on the Competency Inventory for Nursing Students (CINS), Problem-Solving Inventory (PSI), comprehensive learning ability, scientific research ability, and proficiency in the theoretical knowledge and practical skills of IV infusion therapy. Nursing quality, the incidence of IV infusion therapy complications and nurse satisfaction with different teaching models were also measured. Results: The scientific research ability, PSI scores, CINS scores, and comprehensive learning ability of the experimental group were better than those of the control group (P 0.05), and their assessment results of practical skills, nursing quality of IV infusion therapy during training, and satisfaction with teaching models were all better than those of the control group with statistical significance (P < 0.05). The incidence of IV infusion therapy complications in the experimental group was lower than that in the control group, indicating statistical significance (P < 0.05). Conclusions: Teaching models based on patient simulators combined with Internet Plus scenario simulation enable nursing students to learn more directly and practice at any time and in any place, and can improve their proficiency in IV infusion theoretical knowledge and skills (e.g. PICC catheterization), core competencies, problem-solving ability, comprehensive learning ability, scientific research ability and the ability to deal with complicated cases. Also, it helps provide high-quality nursing education, improve the nursing quality of IV therapy, reduce the incidence of related complications, and ensure the safety of patients with IV therapy.
基金supported by the National Natural Science Foundation of China(52222002)Bureau of International Cooperation of Chinese Academy of Sciences(032GJHZ2022035MI)State Key Laboratory of Environmental Aquatic Chemistry(23Z01ESPCR).
文摘The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction selectivities toward water matrices and degradation efficiencies for target micropollutants.Hence,process selection and optimization are crucial.This study developed a facilitated prediction method for the photon fluence-based rate constant for micropollutant degradation(K′_(p,MP))in various UV-AOPs by combining model simulation with portable measurement.Portable methods for measuring the scavenging capacities of the principal RRs(RRSCs)involved in UV-AOPs(i.e.,HO^(·),SO_(4)^(·-),and Cl^(·))using a mini-fluidic photoreaction system were proposed.The simulation models consisted of photochemical,quantitative structure–activity relationship,and radical concentration steady-state approximation models.The RRSCs were determined in eight test waters,and a higher RRSC was found to be associated with a more complex water matrix.Then,by taking sulfamethazine,caffeine,and carbamazepine as model micropollutants,the k′_(p,MP) values in various UV-AOPs were predicted and further verified experimentally.A lower k′_(p,MP) was found to be associated with a higher RRSC for a stronger RR competition;for example,k′_(p,MP) values of 130.9 and 332.5 m^(2) einstein^(–1),respectively,were obtained for carbamazepine degradation by UV/H_(2)O_(2) in the raw water(RRSC=9.47×10^(4) s^(-1))and sand-filtered effluent(RRSC=2.87×10^(4) s^(-1))of a drinking water treatment plant.The developed method facilitates process selection and optimization for UV-AOPs,which is essential for increasing the efficiency and cost-effectiveness of water treatment.
基金supported by National Natural Science Foundation of China(NSFC)(No.62101274 and 62101275)Natural Science Foundation of Jiangsu Province(BK20210640)Open Research Fund of National Mobile Communications Research Laboratory Southeast University under Grant 2021D03。
文摘In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.
基金supported by the Shanghai Philosophy and Social Science Foundation(2022ECK004)Shanghai Soft Science Research Project(23692123400)。
文摘Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.
基金supported by the Third Xinjiang Scientific Expedition Program (2022xjkk1100)the Tianchi Talent Project
文摘The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.
基金Under the auspices of Humanities and Social Sciences Foundation of Soochow University(No.22XM2008)National Social Science Foundation of China(No.23BGL168)。
文摘As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem service value(ESV).Based on the patterns of land use change and the ESV change in Su-Xi-Chang metropolitan area from 2000 to 2020,we set up four scenarios:natural development scenario,urban development scenario,arable land protection scenario and ecological protection scenario,and simulated the impact of land use changes on the ESV in these scenarios.The results showed that:1) the area of built-up land in the Su-XiChang metropolitan area increased significantly from 2000 to 2020,and the area of other types of land decreased.Arable land underwent the highest transfer-out area,and was primarily converted into built-up land.The total ESV of Su-Xi-Chang metropolitan area increased initially then declined from 2000–2020,and the value of almost all individual ecosystem services decreased.2) Population density,GDP per area,night lighting intensity,and road network density can negatively impact the ESV.3) The total ESV loss under the natural development and urban development scenarios was high,and the expansion of the built-up land and the drastic shrinkage of the arable land contributed to the ESV decline under both scenarios.The total ESV under arable land protection and ecological protection scenarios increases,and therefore these scenarios are suitable for future land use optimization in Su-Xi-Chang.This study could provide a certain reference for land use planning and allocation,and offer guidance for the rational allocation of land resources.
基金Under the auspices of National Natural Science Foundation of China (No.42176221,41901133)Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA19060205)Seed project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences (No.YIC-E3518907)。
文摘Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions.
文摘In the R&D phase of Gravity-1(YL-1), a multi-domain modeling and simulation technology based on Modelica language was introduced, which was a recent attempt in the practice of modeling and simulation method for launch vehicles in China. It realizes a complex coupling model within a unified model for different domains, so that technologists can work on one model. It ensured the success of YL-1 first launch mission, supports rapid iteration, full validation, and tight design collaboration.
基金The 2023 Langfang Science and Technology Support Plan Project:Design and Implementation of Earthquake Disaster Emergency Support Decision System in the Beijing-Tianjin-Hebei Region(Project number:2023013134)。
文摘This study introduces an innovative approach by integrating AnyLogic simulation into emergency evacuation strategies to enhance security protocols.The research focuses on leveraging advanced computational models to simulate and optimize evacuation scenarios in various settings,including public venues,residential areas,and urban environments.By integrating real-world data and behavioral models,the simulation accurately represents human movements,decision-making processes,and traffic flow dynamics during evacuation scenarios.The study evaluates the effectiveness of various evacuation strategies,including route planning,crowd behavior,and emergency response coordination,using a scenario-driven approach within the AnyLogic simulation environment.Furthermore,this research contributes to the establishment of optimized emergency response protocols by systematically evaluating and refining evacuation plans.The research frameworks mentioned in the research imply the efficient use of the AnyLogic simulation model to be used in different sectors and fields to enhance the strategies for saving lives and implementing an efficient evacuation management system.
文摘We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.
基金The National Natural Science Foundation of China(No.51209040,51279134)the Natural Science Foundation of Jiangsu Province(No.BK2012341)+1 种基金the Fundamental Research Funds for the Central Universities(No.SJLX_0087)the Research Fund of Nanjing Hydraulic Research Institute(No.Y213012)
文摘In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.
文摘Modeling and simulation(M&S)play a critical role in both engineering and basic research processes.Computer-based models have existed since the 1950s,and those early models have given way to the more complex computational and physics-based simula-tions used today.As such,a great deal of research has been done to establish what level of trust should be given to simulation outputs and how to verify and validate the mod-els used in these simulations.This paper presents an overview of the theoretical work done to date defining formal definitions for,and methods of,verification and validation(V&V)of computer models.Simulation models are broken down into three broad cate-gories:analytical and simulation models,computational and physics-based models,and simulations of autonomous systems,and the unique theories and methods developed to address V&V of these models are presented.This paper also presents the current prob-lems in the theoretical field of V&V for models as simulations move from single system models and simulations to more complex simulation tools.In particular,this paper high-lights the lack of agreed-upon methods for V&V of simulations of autonomous systems,such as an autonomous unmanned vehicles,and proposes some next steps needed to address this problem.
基金This work used the Extreme Science and Engineering Discovery Environment(XSEDE)which is supported by National Science Foundation grant number OCI-1053575+1 种基金The first author expresses the appreciation of funds received from the National Science Foundation(Award#CNS-1028177)support from San Diego State University。
文摘Geospatial simulation models can help us understand the dynamic aspects of Digital Earth.To implement high-performance simulation models for complex geospatial problems,grid computing and cloud computing are two promising computational frameworks.This research compares the benefits and drawbacks of both in Web-based frameworks by testing a parallel Geographic Information System(GIS)simulation model(Schelling’s residential segregation model).The parallel GIS simulation model was tested on XSEDE(a representative grid computing platform)and Amazon EC2(a representative cloud computing platform).The test results demonstrate that cloud computing platforms can provide almost the same parallel computing capability as high-end grid computing frameworks.However,cloud computing resources are more accessible to individual scientists,easier to request and set up,and have more scalable software architecture for on-demand and dedicated Web services.These advantages may attract more geospatial scientists to utilize cloud computing for the development of Digital Earth simulation models in the future.
文摘With the development of science and technology, great changes have taken place in medical education, making it increasingly complicated and diversified. For medical students who have just finished basic medicine courses and are preparing for their hospital internships, it is difficult to gain experience performing direct physical examinations on patients. Currently, residents' clinical skills are assessed very strictly; simply taking notes and reciting facts will not suffice. Because considerable attention is being paid to medical students" clinical skills on a national level,