Acoustic nonlinearity paramcter B / A is a new important parameter in ultrasonic tissue characterization. In this paper, we present the nonlinear theory of a finite amplitude plane sound wave propagating in a layer me...Acoustic nonlinearity paramcter B / A is a new important parameter in ultrasonic tissue characterization. In this paper, we present the nonlinear theory of a finite amplitude plane sound wave propagating in a layer medium by Burgers' equation and apply this analysis in the case of imaging with the second harmonic wave. A computer simulation of acoustic nonlinear parameter imaging was carried out from the second harmonic data in a conventional CT algorithm. The reconstructed imagcs were obtained by using filtered back projection algorithm. The tomography of acoustic nonlinear parameter for simple phantoms was reconstructed with quite good quality.展开更多
Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton m...Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton model and the conditional nonlinear optimal perturbation approach related to parameters,we investigated the eff ects of parameter uncertainties on DCM simulations.First,the sensitivity of single parameter was analyzed.The sensitivity ranking of 10 parameters was obtained by analyzing the top four specifi cally.The most sensitive parameter(background turbidity)aff ects the light supply for DCM formation,whereas the other three parameters(nutrient content of phytoplankton,nutrient recycling coeffi cient,and vertical turbulent diff usivity)control nutrient supply.To explore the interactions among diff erent parameters,the sensitivity of multiple parameters was further studied by examining combinations of four parameters.The results show that background turbidity is replaced by the phytoplankton loss rate in the optimal parameter combination.In addition,we found that interactions among these parameters are responsible for such diff erences.Finally,we found that reducing the uncertainties of sensitive parameters could improve DCM simulations remarkably.Compared with the sensitive parameters identifi ed in the single parameter analysis,reducing parameter uncertainties in the optimal combination produced better model performance.This study shows the importance of nonlinear interactions among various parameters in identifying sensitive parameters.In the future,the conditional nonlinear optimal perturbation approach related to parameters,especially optimal parameter combinations,is expected to greatly improve DCM simulations in complex ecosystem models.展开更多
In the nonlinearity parameter B/A tomography using the second harmonic wav, it is very important to analyze the ultrasonic field of the transducer, especially the generation of the second harmonic wave in the near...In the nonlinearity parameter B/A tomography using the second harmonic wav, it is very important to analyze the ultrasonic field of the transducer, especially the generation of the second harmonic wave in the nearfield. In this paper, the theoretical study and experimental measurements of the second harmoinc pressure field from a circular piston source are performed.And the effect on the nonlinearity parameter tomograaphy is discussed. The results will be used to decrease the error of reconstruction in nonlinearity parameter tomography and bring the ultrasoinc diagnosis a step forward展开更多
Based on the finite amplitude insert-substitu- tion method, a novel technique to reconstruct the acoustic nonlinear parameter B/A tomography for biological tissues in reflection mode via the difference frequency wave ...Based on the finite amplitude insert-substitu- tion method, a novel technique to reconstruct the acoustic nonlinear parameter B/A tomography for biological tissues in reflection mode via the difference frequency wave generated by a parametric array is developed in this paper. An experimental system is established, and the beam pattern of the difference frequency wave is measured and compared with that excited directly from a transmitter at the same frequency. B/A tomography for several biological tissues including normal and pathological tissues, is experimentally obtained with satisfying quality. Results indicate that B/A imaging using this mode may become a novel modality in ultrasonic diagnosis.展开更多
This paper mainly studies the comparison of the global vehicle models and the effects of the inertial parameters due to the center of gravity(CG)positions when we consider that the vehicle has only one CG.This paper p...This paper mainly studies the comparison of the global vehicle models and the effects of the inertial parameters due to the center of gravity(CG)positions when we consider that the vehicle has only one CG.This paper proposes a new nonlinear model vehicle model which considers both unsprung mass and sprung mass CG.The CG positions and inertial parameters effects are analyzed in terms of the published vehicle dynamics models.To this end,two 14 degree-of-freedom(DOF)vehicle models are developed and compared to investigate the vehicle dynamics responses due to the different CG height and inertial parameters concepts.The proposed models describe simultaneously the vehicle motion in longitudinal,lateral and vertical directions as well as roll,pitch and yaw of the vehicle about corresponding axis.The passive and active moments and the forces acting on the vehicle are also described and they are considered as a direct consequence of acceleration,braking and steering maneuvers.The proposed model M1 takes both the CG of sprung mass,unsprung mass and total vehicle mass into account.The second model M2 assumes that the vehicle is one solid body which has a single CG as reported in majority of literature.The two vehicle models are compared and analyzed to evaluate vehicle ride and handling dynamic responses under braking/acceleration and cornering maneuvers.Simulation results show that the proposed model M1 could offer analytically some abilities and driving performances,as well as improved roll and pitch in a very flexible manner compared to the second model M2.展开更多
Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those e...Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those experimental ones reported in literature. Some alloying elements have marked influence on Jominy end-quench curves of steels. An improved mathematical model for simulating the Jominy end-quench curves is proposed by introducing a parameter named alloying interactions equivalent (Le). With the improved model, the Jominy end-quench curves of steels so obtained agree very well with the experimental ones.展开更多
An analysis of statistical expected values for transformations is performed in this study to quantify the effect of heterogeneity on spatial geological modeling and evaluations. Algebraic transformations are frequentl...An analysis of statistical expected values for transformations is performed in this study to quantify the effect of heterogeneity on spatial geological modeling and evaluations. Algebraic transformations are frequently applied to data from logging to allow for the modeling of geological properties. Transformations may be powers, products, and exponential operations which are commonly used in well-known relations (e.g., porosity-permeability transforms). The results of this study show that correct computations must account for residual transformation terms which arise due to lack of independence among heterogeneous geological properties. In the case of an exponential porosity-permeability transform, the values may be positive. This proves that a simple exponential model back-transformed from linear regression underestimates permeability. In the case of transformations involving two or more properties, residual terms may represent the contribution of heterogeneous components which occur when properties vary together, regardless of a pair-wise linear independence. A consequence of power- and product-transform models is that regression equations within those transformations need corrections via residual cumulants. A generalization of this result is that transformations of multivariate spatial attributes require multiple-point random variable relations. This analysis provides practical solutions leading to a methodology for nonlinear modeling using correct back transformations in geology.展开更多
Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonl...Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)is an effective method of studying the parameters sensitivity,which represents a type of parameter error with maximum nonlinear development at the prediction time.Intelligent algorithms have been widely applied to solving Conditional Nonlinear Optimal Perturbation(CNOP).In the paper,we proposed an improved simulated annealing(SA)algorithm to solve CNOP-P to get the optimal parameters error,studied the sensitivity of the single parameter and the combination of multiple parameters and verified the effect of reducing the error of sensitive parameters on reducing the uncertainty of model simulation.Specifically,we firstly found the non-period oscillation of kinetic energy time series of double gyre variation,then extracted two transition periods,which are respectively from high energy to low energy and from low energy to high energy.For every transition period,three parameters,respectively wind amplitude(WD),viscosity coefficient(VC)and linear bottom drag coefficient(RDRG),were studied by CNOP-P solved with SA algorithm.Finally,for sensitive parameters,their effect on model simulation is verified.Experiments results showed that the sensitivity order is WD>VC>>RDRG,the effect of the combination of multiple sensitive parameters is greater than that of single parameter superposition and the reduction of error of sensitive parameters can effectively reduce model prediction error which confirmed the importance of sensitive parameters analysis.展开更多
文摘Acoustic nonlinearity paramcter B / A is a new important parameter in ultrasonic tissue characterization. In this paper, we present the nonlinear theory of a finite amplitude plane sound wave propagating in a layer medium by Burgers' equation and apply this analysis in the case of imaging with the second harmonic wave. A computer simulation of acoustic nonlinear parameter imaging was carried out from the second harmonic data in a conventional CT algorithm. The reconstructed imagcs were obtained by using filtered back projection algorithm. The tomography of acoustic nonlinear parameter for simple phantoms was reconstructed with quite good quality.
基金Supported by the Qingdao National Laboratory for Marine Science and Technology(No.2016OPR0107)the National Natural Science Foundation of China(No.41806013)。
文摘Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton model and the conditional nonlinear optimal perturbation approach related to parameters,we investigated the eff ects of parameter uncertainties on DCM simulations.First,the sensitivity of single parameter was analyzed.The sensitivity ranking of 10 parameters was obtained by analyzing the top four specifi cally.The most sensitive parameter(background turbidity)aff ects the light supply for DCM formation,whereas the other three parameters(nutrient content of phytoplankton,nutrient recycling coeffi cient,and vertical turbulent diff usivity)control nutrient supply.To explore the interactions among diff erent parameters,the sensitivity of multiple parameters was further studied by examining combinations of four parameters.The results show that background turbidity is replaced by the phytoplankton loss rate in the optimal parameter combination.In addition,we found that interactions among these parameters are responsible for such diff erences.Finally,we found that reducing the uncertainties of sensitive parameters could improve DCM simulations remarkably.Compared with the sensitive parameters identifi ed in the single parameter analysis,reducing parameter uncertainties in the optimal combination produced better model performance.This study shows the importance of nonlinear interactions among various parameters in identifying sensitive parameters.In the future,the conditional nonlinear optimal perturbation approach related to parameters,especially optimal parameter combinations,is expected to greatly improve DCM simulations in complex ecosystem models.
文摘In the nonlinearity parameter B/A tomography using the second harmonic wav, it is very important to analyze the ultrasonic field of the transducer, especially the generation of the second harmonic wave in the nearfield. In this paper, the theoretical study and experimental measurements of the second harmoinc pressure field from a circular piston source are performed.And the effect on the nonlinearity parameter tomograaphy is discussed. The results will be used to decrease the error of reconstruction in nonlinearity parameter tomography and bring the ultrasoinc diagnosis a step forward
文摘Based on the finite amplitude insert-substitu- tion method, a novel technique to reconstruct the acoustic nonlinear parameter B/A tomography for biological tissues in reflection mode via the difference frequency wave generated by a parametric array is developed in this paper. An experimental system is established, and the beam pattern of the difference frequency wave is measured and compared with that excited directly from a transmitter at the same frequency. B/A tomography for several biological tissues including normal and pathological tissues, is experimentally obtained with satisfying quality. Results indicate that B/A imaging using this mode may become a novel modality in ultrasonic diagnosis.
文摘This paper mainly studies the comparison of the global vehicle models and the effects of the inertial parameters due to the center of gravity(CG)positions when we consider that the vehicle has only one CG.This paper proposes a new nonlinear model vehicle model which considers both unsprung mass and sprung mass CG.The CG positions and inertial parameters effects are analyzed in terms of the published vehicle dynamics models.To this end,two 14 degree-of-freedom(DOF)vehicle models are developed and compared to investigate the vehicle dynamics responses due to the different CG height and inertial parameters concepts.The proposed models describe simultaneously the vehicle motion in longitudinal,lateral and vertical directions as well as roll,pitch and yaw of the vehicle about corresponding axis.The passive and active moments and the forces acting on the vehicle are also described and they are considered as a direct consequence of acceleration,braking and steering maneuvers.The proposed model M1 takes both the CG of sprung mass,unsprung mass and total vehicle mass into account.The second model M2 assumes that the vehicle is one solid body which has a single CG as reported in majority of literature.The two vehicle models are compared and analyzed to evaluate vehicle ride and handling dynamic responses under braking/acceleration and cornering maneuvers.Simulation results show that the proposed model M1 could offer analytically some abilities and driving performances,as well as improved roll and pitch in a very flexible manner compared to the second model M2.
基金Item Sponsored by National Natural Science Foundation of China(50271009)
文摘Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those experimental ones reported in literature. Some alloying elements have marked influence on Jominy end-quench curves of steels. An improved mathematical model for simulating the Jominy end-quench curves is proposed by introducing a parameter named alloying interactions equivalent (Le). With the improved model, the Jominy end-quench curves of steels so obtained agree very well with the experimental ones.
文摘An analysis of statistical expected values for transformations is performed in this study to quantify the effect of heterogeneity on spatial geological modeling and evaluations. Algebraic transformations are frequently applied to data from logging to allow for the modeling of geological properties. Transformations may be powers, products, and exponential operations which are commonly used in well-known relations (e.g., porosity-permeability transforms). The results of this study show that correct computations must account for residual transformation terms which arise due to lack of independence among heterogeneous geological properties. In the case of an exponential porosity-permeability transform, the values may be positive. This proves that a simple exponential model back-transformed from linear regression underestimates permeability. In the case of transformations involving two or more properties, residual terms may represent the contribution of heterogeneous components which occur when properties vary together, regardless of a pair-wise linear independence. A consequence of power- and product-transform models is that regression equations within those transformations need corrections via residual cumulants. A generalization of this result is that transformations of multivariate spatial attributes require multiple-point random variable relations. This analysis provides practical solutions leading to a methodology for nonlinear modeling using correct back transformations in geology.
基金Supported by the National Natural Science Foundation of China(No.41405097)the Fundamental Research Funds for the Central Universities of China in 2017
文摘Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)is an effective method of studying the parameters sensitivity,which represents a type of parameter error with maximum nonlinear development at the prediction time.Intelligent algorithms have been widely applied to solving Conditional Nonlinear Optimal Perturbation(CNOP).In the paper,we proposed an improved simulated annealing(SA)algorithm to solve CNOP-P to get the optimal parameters error,studied the sensitivity of the single parameter and the combination of multiple parameters and verified the effect of reducing the error of sensitive parameters on reducing the uncertainty of model simulation.Specifically,we firstly found the non-period oscillation of kinetic energy time series of double gyre variation,then extracted two transition periods,which are respectively from high energy to low energy and from low energy to high energy.For every transition period,three parameters,respectively wind amplitude(WD),viscosity coefficient(VC)and linear bottom drag coefficient(RDRG),were studied by CNOP-P solved with SA algorithm.Finally,for sensitive parameters,their effect on model simulation is verified.Experiments results showed that the sensitivity order is WD>VC>>RDRG,the effect of the combination of multiple sensitive parameters is greater than that of single parameter superposition and the reduction of error of sensitive parameters can effectively reduce model prediction error which confirmed the importance of sensitive parameters analysis.