期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quasi-likelihood techniques in a logistic regression equation for identifying Simulium damnosum s.l.larval habitats intra-cluster covariates in Togo 被引量:1
1
作者 Benjamin G.JACOB Robert J.NOVAK +5 位作者 Laurent TOE Moussa S.SANFO Abena N.AFRIYIE Mohammed A.IBRAHIM Daniel A.GRIFFITH Thomas R.UNNASCH 《Geo-Spatial Information Science》 SCIE EI 2012年第2期117-133,共17页
The standard methods for regression analyses of clustered riverine larval habitat data of Simulium damnosum s.l.a major black-fly vector of onchoceriasis,postulate models relating observational ecological-sampled para... The standard methods for regression analyses of clustered riverine larval habitat data of Simulium damnosum s.l.a major black-fly vector of onchoceriasis,postulate models relating observational ecological-sampled parameter estimators to prolific habitats without accounting for residual intra-cluster error correlation effects.Generally,this correlation comes from two sources:(1)the design of the random effects and their assumed covariance from the multiple levels within the regression model and(2)the correlation structure of the residuals.Unfortunately,inconspicuous errors in residual intracluster correlation estimates can overstate precision in forecasted S.damnosum s.l.riverine larval habitat explanatory attributes regardless how they are treated(e.g.independent,autoregressive,Toeplitz,etc.).In this research,the geographical locations for multiple riverine-based S.damnosum s.l.larval ecosystem habitats sampled from two preestablished epidemiological sites in Togo were identified and recorded from July 2009 to June 2010.Initially,the data were aggregated into PROC GENMOD.An agglomerative hierarchical residual cluster-based analysis was then performed.The sampled clustered study site data was then analyzed for statistical correlations using monthly biting rates(MBR).Euclidean distance measurements and terrain-related geomorphological statistics were then generated in ArcGIS.A digital overlay was then performed also in ArcGIS using the georeferenced ground coordinates of high and low density clusters stratified by annual biting rates(ABR).The data was overlain onto multitemporal sub-meter pixel resolution satellite data(i.e.QuickBird 0.61m wavbands).Orthogonal spatial filter eigenvectors were then generated in SAS/Geographic Information Systems(GIS).Univariate and nonlinear regression-based models(i.e.logistic,Poisson,and negative binomial)were also employed to determine probability distributions and to identify statistically significant parameter estimators from the sampled data.Thereafter,Durbin–Watson statistics were used to test the null hypothesis that the regression residuals were not autocorrelated against the alternative that the residuals followed an autoregressive process in AUTOREG.Bayesian uncertainty matrices were also constructed employing normal priors for each of the sampled estimators in PROC MCMC.The residuals revealed both spatially structured and unstructured error effects in the high and low ABR-stratified clusters.The analyses also revealed that the estimators,levels of turbidity,and presence of rocks were statistically significant for the high-ABR-stratified clusters,while the estimators distance between habitats and floating vegetation were important for the low-ABR-stratified cluster.Varying and constant coefficient regression models,ABRstratified GIS-generated clusters,sub-meter resolution satellite imagery,a robust residual intra-cluster diagnostic test,MBR-based histograms,eigendecomposition spatial filter algorithms,and Bayesian matrices can enable accurate autoregressive estimation of latent uncertainity affects and other residual error probabilities(i.e.heteroskedasticity)for testing correlations between georeferenced S.damnosum s.l.riverine larval habitat estimators.The asymptotic distribution of the resulting residual adjusted intra-cluster predictor error autocovariate coefficients can thereafter be established while estimates of the asymptotic variance can lead to the construction of approximate confidence intervals for accurately targeting productive S.damnosum s.l.habitats based on spatiotemporal field-sampled count data. 展开更多
关键词 simulium damnosum s.l.cluster covariates QuickBird Onchoceriasis Annual biting rates Bayesian TOGO
原文传递
尼日利亚西南部奥孙河沿线黑蝇Simulium damnosum Theobald complex的形态分类研究(双翅目:蚋科)(英文)
2
作者 Monsuru Adebayo ADELEKE Chiedu Felix MAFIANA +2 位作者 Sammy Olufemi SAM-WOBO Ganiyu Olatunji OLATUNDE Olaoluwa Pheabian AKINWALE 《昆虫学报》 CAS CSCD 北大核心 2010年第11期1319-1324,共6页
黑蝇Simulium damnosumsensu lato是由多个姊妹种组成的复合体,这些种在生态学和盘尾丝虫病的传播方面各不相同。本文对奥孙河沿线的尼日利亚西南部森林区域的黑蝇S. damnosum s.l.复合体的组成以及成虫的形态学特征进行了研究。本研究... 黑蝇Simulium damnosumsensu lato是由多个姊妹种组成的复合体,这些种在生态学和盘尾丝虫病的传播方面各不相同。本文对奥孙河沿线的尼日利亚西南部森林区域的黑蝇S. damnosum s.l.复合体的组成以及成虫的形态学特征进行了研究。本研究所用的黑蝇S. damnosum s.l.成虫标本来源于奥孙河沿线的3个区,分别是Osun Eleja,Osun Ogbere和Osun Budepo。标本采集通过人体诱捕的方式,采集时间从2008年2月至2009年6月上午7:00到下午6:00,每两周采集1次。通过观察成虫的翅毛簇(wing tufts)和其他形态特征,对其进行分类研究。结果表明:存在同域分布的森林种和稀树草原种。在奥孙河沿线3个区内,森林种为优势种,占总捕获量的99.18%,而稀树草原种仅占0.82%;森林种和稀树草原种在多度上存在显著差异(P<0.05)。所捕获的所有稀树草原种的翅毛簇均为灰白色,而捕获的森林种的翅毛簇颜色存在显著差异(P<0.05)。为了更清楚地揭示该地区黑蝇S. damnosum s.l.的物种组成,建议进行更深入的研究。 展开更多
关键词 simulium damnosums.l. 形态分类学 翅毛簇 优势种 尼日利亚
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部