期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Simultaneous Perturbation Stochastic Approximation Algorithm Combined with Neural Network and Fuzzy Simulation
1
作者 宁玉富 唐万生 郭长友 《Transactions of Tianjin University》 EI CAS 2008年第1期43-49,共7页
In order to solve three kinds of fuzzy programm model, fuzzy chance-constrained programming mode ng models, i.e. fuzzy expected value and fuzzy dependent-chance programming model, a simultaneous perturbation stochast... In order to solve three kinds of fuzzy programm model, fuzzy chance-constrained programming mode ng models, i.e. fuzzy expected value and fuzzy dependent-chance programming model, a simultaneous perturbation stochastic approximation algorithm is proposed by integrating neural network with fuzzy simulation. At first, fuzzy simulation is used to generate a set of input-output data. Then a neural network is trained according to the set. Finally, the trained neural network is embedded in simultaneous perturbation stochastic approximation algorithm. Simultaneous perturbation stochastic approximation algorithm is used to search the optimal solution. Two numerical examples are presented to illustrate the effectiveness of the proposed algorithm. 展开更多
关键词 fuzzy variable fuzzy programming fuzzy simulation neural network approximation theory perturbation techniques computer simulation simultaneous perturbation stochasticapproximation algorithm
下载PDF
H-infinity control for air-breathing hypersonic vehicle based on online simultaneous policy update algorithm
2
作者 Chao Guo Huai-Ning Wu +1 位作者 Biao Luo Lei Guo 《International Journal of Intelligent Computing and Cybernetics》 EI 2013年第2期126-143,共18页
Purpose–The air-breathing hypersonic vehicle(AHV)includes intricate inherent coupling between the propulsion system and the airframe dynamics,which results in an intractable nonlinear system for the controller design... Purpose–The air-breathing hypersonic vehicle(AHV)includes intricate inherent coupling between the propulsion system and the airframe dynamics,which results in an intractable nonlinear system for the controller design.The purpose of this paper is to propose an H1 control method for AHV based on the online simultaneous policy update algorithm(SPUA).Design/methodology/approach–Initially,the H1 state feedback control problem of the AHV is converted to the problem of solving the Hamilton-Jacobi-Isaacs(HJI)equation,which is notoriously difficult to solve both numerically and analytically.To overcome this difficulty,the online SPUA is introduced to solve the HJI equation without requiring the accurate knowledge of the internal system dynamics.Subsequently,the online SPUA is implemented on the basis of an actor-critic structure,in which neural network(NN)is employed for approximating the cost function and a least-square method is used to calculate the NN weight parameters.Findings–Simulation study on the AHV demonstrates the effectiveness of the proposed H1 control method.Originality/value–The paper presents an interesting method for the H1 state feedback control design problem of the AHV based on online SPUA. 展开更多
关键词 Programming and algorithm theory Controllers Design Nonlinear H1 control Air-breathing hypersonic vehicle simultaneous policy update algorithm Hamilton-Jacobi-Isaacs equation ONLINE
原文传递
DESIGN OF SPARSE ARRAY FOR MAD IMAGING BASED ON MAXIMIZING INFORMATION CAPACITY
3
作者 Li Lianlin B.Jafarpour 《Journal of Electronics(China)》 2013年第5期476-482,共7页
In past years,growing efforts have been made to the rapid interpretation of magnetic field data acquired by a sparse synthetic or real magnetic sensor array.An appealing requirement on such sparse array arranged withi... In past years,growing efforts have been made to the rapid interpretation of magnetic field data acquired by a sparse synthetic or real magnetic sensor array.An appealing requirement on such sparse array arranged within a specified survey region is that to make the number of sensor elements as small as possible,meanwhile without deteriorating imaging quality.For this end,we propose a novel methodology of arranging sensors in an optimal manner,exploring the concept of information capacity developed originally in the communication society.The proposed scheme reduces mathematically the design of a sparse sensor array into solving a combinatorial optimization problem,which can be resolved efficiently using widely adopted Simultaneous Perturbation and Statistical Algorithm(SPSA).Three sets of numerical examples of designing optimal sensor array are provided to demonstrate the performance of proposed methodology. 展开更多
关键词 Sparse array Magnetic vector and tensor fields Maximizing information capacity simultaneous Perturbation and Statistical algorithm(SPSA) Geophysics exploration
下载PDF
Hardware Acceleration for SLAM in Mobile Systems
4
作者 樊哲 郝一帆 +2 位作者 支天 郭崎 杜子东 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第6期1300-1322,共23页
The emerging mobile robot industry has spurred a flurry of interest in solving the simultaneous localization and mapping(SLAM)problem.However,existing SLAM platforms have difficulty in meeting the real-time and low-po... The emerging mobile robot industry has spurred a flurry of interest in solving the simultaneous localization and mapping(SLAM)problem.However,existing SLAM platforms have difficulty in meeting the real-time and low-pow-er requirements imposed by mobile systems.Though specialized hardware is promising with regard to achieving high per-formance and lowering the power,designing an efficient accelerator for SLAM is severely hindered by a wide variety of SLAM algorithms.Based on our detailed analysis of representative SLAM algorithms,we observe that SLAM algorithms advance two challenges for designing efficient hardware accelerators:the large number of computational primitives and ir-regular control flows.To address these two challenges,we propose a hardware accelerator that features composable com-putation units classified as the matrix,vector,scalar,and control units.In addition,we design a hierarchical instruction set for coping with a broad range of SLAM algorithms with irregular control flows.Experimental results show that,com-pared against an Intel x86 processor,on average,our accelerator with the area of 7.41 mm^(2) achieves 10.52x and 112.62x better performance and energy savings,respectively,across different datasets.Compared against a more energy-efficient ARM Cortex processor,our accelerator still achieves 33.03x and 62.64x better performance and energy savings,respec-tively. 展开更多
关键词 hardware accelerator instruction set mobile system simultaneous localization and mapping(SLAM)algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部