Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the te...Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the terminals. The application of WIPT to the underwater acoustic sensor networks(UWASNs) not only retains the long range communication capabilities, but also provides an auxiliary and convenient energy supplement way for the terminal sensors, and thus is a promising scheme to solve the energy-limited problem for the UWASNs. In this paper, we propose the integration of WIPT into the UWASNs and provide an overview on various enabling techniques for the WIPT based UWASNs(WIPT-UWASNs) as well as pointing out future research challenges and opportunities for WIPT-UWASNs.展开更多
This paper studies a simultaneous wireless information and power transfer system with multiple external eavesdroppers and internal curious users.We model the random network by Poisson cluster process in consideration ...This paper studies a simultaneous wireless information and power transfer system with multiple external eavesdroppers and internal curious users.We model the random network by Poisson cluster process in consideration of the case where eavesdroppers hide around certain targets.Focusing on the users that work in harvesting-transmitting mode with time switching receivers,we establish communication model via time division multiple access.On this basis,we propose a lightweight secure transmission scheme based on dual-thresholds for physical-layer security enhancement,which consists of two protocols applied to the downlink(DL) and uplink(UL) transmission respectively.In the DL,we design a dynamic information-power switching transmission protocol based on signal-to-noise ratio threshold,which provides an opportunistic approach to reform the fixed period allocation of information and power transfer;in the UL,an energy threshold is proposed for users to control the transmission,which is called a user-led on-off transmission protocol.Furthermore,we give a comprehensive performance analysis for the proposed scheme in terms of delay,reliability,security and secrecy throughput.Based on the analysis results,we optimize the two thresholds and the DL-UL allocationcoefficient to maximize the secrecy throughput.Simulation results show the proposed scheme can bring about a substantial secrecy gain.展开更多
Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative app...Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative applications using SWIPT,which is mainly based on wireless energy harvesting from electromagnetic waves used in communications.Wireless power transfer that uses magnetrons has been developed for communication technologies.Injection-locked magnetrons that can be used to facilitate high-power SWIPT for several devices are reviewed in this paper.This new technology is expected to pave the way for promoting the application of SWIPT in a wide range of fields.展开更多
Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network....Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network. However, Simultaneous Wireless Information and Power Transfer (SWIPT) in the same RF bands is challenging. The majority of previous studies compared SWIPT performance to Gaussian signaling with an infinite alphabet, which is impossible to implement in any realistic communication system. In contrast, we study the SWIPT system in a well-known Nakagami-m wireless fading channel using practical modulation techniques with finite alphabet. The attainable rate-energy-reliability tradeoff and the corresponding rationale are revealed for fixed modulation schemes. Furthermore, an adaptive modulation-based transceiver is provided for further expanding the attainable rate-energy-reliability region based on various SWIPT performances of different modulation schemes. The modulation switching thresholds and transmit power allocation at the SWIPT transmitter and the power splitting ratios at the SWIPT receiver are jointly optimized to maximize the attainable spectrum efficiency of wireless information transfer while satisfying the WPT requirement and the instantaneous and average BER constraints. Numerical results demonstrate the SWIPT performance of various fixed modulation schemes in different fading conditions. The advantage of the adaptive modulation-based SWIPT transceiver is validated.展开更多
Implementing self-sustainable wireless communication systems is urgent and challenging for 5G and 6G technologies.In this paper,we elaborate on a system solution using the programmable metasurface(PMS)for simultaneous...Implementing self-sustainable wireless communication systems is urgent and challenging for 5G and 6G technologies.In this paper,we elaborate on a system solution using the programmable metasurface(PMS)for simultaneous wireless information and power transfers(SWIPT),offering an optimized wireless energy management network.Both transmitting and receiving sides of the proposed solution are presented in detail.On the transmitting side,employing the wireless power transfer(WPT)technique,we present versatile power conveying strategies for near-field or far-field targets,single or multiple targets,and equal or unequal power targets.On the receiving side,utilizing the wireless energy harvesting(WEH)technique,we report our work on multi-functional rectifying metasurfaces that collect the wirelessly transmitted energy and the ambient energy.More importantly,a numerical model based on the plane-wave angular spectrum method is investigated to accurately calculate the radiation fields of PMS in the Fresnel and Fraunhofer regions.With this model,the efficiencies of WPT between the transmitter and the receiver are analyzed.Finally,future research directions are discussed,and integrated PMS for wireless information and wireless power is outlined.展开更多
无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进...无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进行信息解码的同时收集能量,与无小区大规模MIMO-NOMA优势互补。文中基于SWIPT研究无小区大规模MIMO-NOMA系统中的能量效率问题,通过联合优化功率分配系数和SWIPT的时隙切换(Time Switching,TS)系数,提高系统的能量效率。为了最大化能量效率,采用布谷鸟算法设计功率分配系数。考虑一种特殊情况,将所有终端的TS系数设置相同,进而推导了最佳TS系数的封闭表达式。仿真结果表明,相较于几种已有方案,文中提出的优化方案可以显著提升系统的能量效率。展开更多
Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superp...Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.展开更多
Simultaneous wireless information and power transfer(SWIPT)architecture is commonly applied in wireless sensors or Internet of Things(IoT)devices,providing both wireless power sources and communication channels.Howeve...Simultaneous wireless information and power transfer(SWIPT)architecture is commonly applied in wireless sensors or Internet of Things(IoT)devices,providing both wireless power sources and communication channels.However,the traditional SWIPT transmitter usually suffers from cross-talk distortion caused by the high peak-to-average power ratio of the input signal and the reduction of power amplifier efficiency.This paper proposes a SWIPT transmitting architecture based on an asynchronous space-time-coding digital metasurface(ASTCM).High-efficiency simultaneous transfer of information and power is achieved via energy distribution and information processing of the wireless monophonic signal reflected from the metasurface.We demonstrate the feasibility of the proposed method through theoretical derivations and experimental verification,which is therefore believed to have great potential in wireless communications and the IoT devices.展开更多
为了提高无线携能通信(Simultaneous Wireless nformation and Power Transfer,SWIPT)通信系统的安全性,同时克服系统收发机硬件损伤(Hardware Impairments,HIs)的影响,提出一种硬件损伤下的智能反射面(Intelligent Reflecting Surface,...为了提高无线携能通信(Simultaneous Wireless nformation and Power Transfer,SWIPT)通信系统的安全性,同时克服系统收发机硬件损伤(Hardware Impairments,HIs)的影响,提出一种硬件损伤下的智能反射面(Intelligent Reflecting Surface,IRS)辅助的SWIPT系统安全波束成形设计方法.考虑能量接收设备为潜在的窃听者,在基站最大发射功率、最小接收能量和IRS相移约束下,通过联合优化基站波束赋形矢量、人工噪声矢量和IRS的相移矩阵,构建系统安全速率最大化问题.针对该优化问题是非凸的,且优化变量是耦合的,提出一种基于交替优化和半正定松弛的有效算法来次优地解决该问题.仿真结果表明,本文所提算法能够在保障能量需求的同时,提升系统的安全性和抗硬件损伤能力.展开更多
This paper investigates the system outage performance of a simultaneous wireless information and power transfer(SWIPT)based two-way decodeand-forward(DF)relay network,where potential hardware impairments(HIs)in all tr...This paper investigates the system outage performance of a simultaneous wireless information and power transfer(SWIPT)based two-way decodeand-forward(DF)relay network,where potential hardware impairments(HIs)in all transceivers are considered.After harvesting energy and decoding messages simultaneously via a power splitting scheme,the energy-limited relay node forwards the decoded information to both terminals.Each terminal combines the signals from the direct and relaying links via selection combining.We derive the system outage probability under independent but non-identically distributed Nakagami-m fading channels.It reveals an overall system ceiling(OSC)effect,i.e.,the system falls in outage if the target rate exceeds an OSC threshold that is determined by the levels of HIs.Furthermore,we derive the diversity gain of the considered network.The result reveals that when the transmission rate is below the OSC threshold,the achieved diversity gain equals the sum of the shape parameter of the direct link and the smaller shape parameter of the terminalto-relay links;otherwise,the diversity gain is zero.This is different from the amplify-and-forward(AF)strategy,under which the relaying links have no contribution to the diversity gain.Simulation results validate the analytical results and reveal that compared with the AF strategy,the SWIPT based two-way relaying links under the DF strategy are more robust to HIs and achieve a lower system outage probability.展开更多
针对有源可重构智能表面(reconfigurable intelligent surface,RIS)辅助的同步无线信息与能量传输(simultaneous wireless information and power transfer,SWIPT)系统,提出了一种考虑公平性的能量资源采集分配算法,以解决因乘性衰落导...针对有源可重构智能表面(reconfigurable intelligent surface,RIS)辅助的同步无线信息与能量传输(simultaneous wireless information and power transfer,SWIPT)系统,提出了一种考虑公平性的能量资源采集分配算法,以解决因乘性衰落导致的公平性能量采集性能较差的问题。在有源RIS辅助的SWIPT系统采用功率切割架构实现信息与能量的同步传输,构建了以所有用户中最小的采集能量最大化为目标函数,用户信干噪比、有源RIS和基站发射功率、功率划分因子等满足需求为约束条件的联合资源分配问题。利用交替优化、半正定松弛、连续凸近似、罚函数等技术将不能直接解决的非凸问题转换成标准凸问题,提出了一种交替迭代的公平性采集能量算法。数值仿真结果表明,所提优化算法能够显著提高用户中能量资源分配最少的用户处采集到的能量值,保障通信网络中能量资源分配的公平性。展开更多
本文研究了在毫微微蜂窝网络(femtocell network,FN)中,协同双小区系统的非正交多址接入(non-orthogonal multiple access,NOMA)与无线携能通信(simultaneous wireless information and power transfer,SWIPT)下行协作通信的中断性能,...本文研究了在毫微微蜂窝网络(femtocell network,FN)中,协同双小区系统的非正交多址接入(non-orthogonal multiple access,NOMA)与无线携能通信(simultaneous wireless information and power transfer,SWIPT)下行协作通信的中断性能,提出了一种边缘用户在邻基站及源基站随机中心用户共同协作的下行接入方案。所提方案共分为两个时隙:第一时隙内由两基站向所有用户广播叠加信号,提供中继服务的中心用户对其所接收的叠加信号逐级解码并收集能量。第二时隙,中心用户将其第一时隙内所收集的能量作为额外功率资源,在优先保证自身通信质量的前提下对成功解码的边缘用户信息进行再编码转发。基于空间均质泊松点过程(Poisson point process,PPP)中心用户的位置模型,推导了中心用户与边缘用户平均中断概率的表达式,进行了蒙特卡罗仿真验证,同时分析了各仿真参数(中心用户分布半径、用户阈值速率、路径损耗指数等)与中心用户、边缘用户平均中断概率的关系。结果表明:所提方案可以改善边缘用户的下行接入中断性能和系统吞吐量。展开更多
Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although...Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although the intelligent reflecting surface(IRS)can be adopted to create effective virtual links to address the mmWave blockage problem,the conventional solutions only adopt IRS in the downlink from the Base Station(BS)to the users to enhance the received signal strength.In practice,the reflection of IRS is also applicable to the uplink to improve the spectral efficiency.It is a challenging to jointly optimize IRS beamforming and system resource allocation for wireless energy acquisition and information transmission.In this paper,we first design a Low-Energy Adaptive Clustering Hierarchy(LEACH)clustering protocol for clustering and data collection.Then,the problem of maximizing the minimum system spectral efficiency is constructed by jointly optimizing the transmit power of sensor devices,the uplink and downlink transmission times,the active beamforming at the BS,and the IRS dynamic beamforming.To solve this non-convex optimization problem,we propose an alternating optimization(AO)-based joint solution algorithm.Simulation results show that the use of IRS dynamic beamforming can significantly improve the spectral efficiency of the system,and ensure the reliability of equipment communication and the sustainability of energy supply under NLOS link.展开更多
为了延长无线通信网络的寿命,提高系统的频谱效率和可靠性,扩大信号覆盖范围,对无线携能传输(Simultaneous Wireless Information and Power Transfer,SWIPT)和非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术进行研究,给出...为了延长无线通信网络的寿命,提高系统的频谱效率和可靠性,扩大信号覆盖范围,对无线携能传输(Simultaneous Wireless Information and Power Transfer,SWIPT)和非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术进行研究,给出了一种简单的无线携能传输的非正交多址接入(Simultaneous Wireless Information and Power Transfer Non-Orthogonal Multiple Access,SWIPT-NOMA)传输策略。在该策略中,近用户利用功率分割(Power-Splitting,PS)协议收集基站发射信号的能量转发解码数据和自身数据,同时实现基站向远近两用户、近用户向远用户的数据传输。在考虑非线性能量收集(Energy Harvesting,EH)的基础上,推导了系统的中断概率的闭式结果,并进一步给出了高信噪比(Signal-to-Noise Ratio,SNR)下的中断性能下限。最后,通过仿真分析验证了理论推导的正确性,并得出了系统参数对系统性能的影响规律。展开更多
Micro-UAV swarms usually generate massive data when performing tasks. These data can be harnessed with various machine learning(ML) algorithms to improve the swarm’s intelligence. To achieve this goal while protectin...Micro-UAV swarms usually generate massive data when performing tasks. These data can be harnessed with various machine learning(ML) algorithms to improve the swarm’s intelligence. To achieve this goal while protecting swarm data privacy, federated learning(FL) has been proposed as a promising enabling technology. During the model training process of FL, the UAV may face an energy scarcity issue due to the limited battery capacity. Fortunately, this issue is potential to be tackled via simultaneous wireless information and power transfer(SWIPT). However, the integration of SWIPT and FL brings new challenges to the system design that have yet to be addressed, which motivates our work. Specifically,in this paper, we consider a micro-UAV swarm network consisting of one base station(BS) and multiple UAVs, where the BS uses FL to train an ML model over the data collected by the swarm. During training, the BS broadcasts the model and energy simultaneously to the UAVs via SWIPT, and each UAV relies on its harvested and battery-stored energy to train the received model and then upload it to the BS for model aggregation. To improve the learning performance, we formulate a problem of maximizing the percentage of scheduled UAVs by jointly optimizing UAV scheduling and wireless resource allocation. The problem is a challenging mixed integer nonlinear programming problem and is NP-hard in general. By exploiting its special structure property, we develop two algorithms to achieve the optimal and suboptimal solutions, respectively. Numerical results show that the suboptimal algorithm achieves a near-optimal performance under various network setups, and significantly outperforms the existing representative baselines. considered.展开更多
In this paper,we investigate the secrecy outage performance in simultaneous wireless information and power transfer(SWIPT)systems taking artificial noise assistance into account.Multiple antennas in the source and a s...In this paper,we investigate the secrecy outage performance in simultaneous wireless information and power transfer(SWIPT)systems taking artificial noise assistance into account.Multiple antennas in the source and a single antenna in both the legitimate receiver and the eavesdropper are assumed.Specifically,the transmitted signal at the source is composed of two parts,where the first part is the information symbols and the other is the noise for the eavesdropper.To avoid making noise in the legitimate receiver,these two parts in the transmitted signals are modulated into two orthogonal dimensions according to the instantaneous channel state between the source and the legitimate receiver.We derive an approximate closed-form expression for the secrecy outage probability(SOP)by adopting the Gauss-Laguerre quadrature(GLQ)method,where the gap between the exact SOP and our approximate SOP converges with increase of the summation terms in the GLQ.To obtain the secrecy diversity order and secrecy array gain for the considered SWIPT system,the asymptotic result of the SOP is also derived.This is tight in the high signal-to-noise ratio region.A novel and robust SOP approximation is also analyzed given a small variance of the signal-to-interference-plus-noise ratio at the eavesdropper.Some selected Monte-Carlo numerical results are presented to validate the correctness of the derived closed-form expressions.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62171187the Guangdong Basic and Applied Basic Research Foundation under Grant 2022A1515011476+1 种基金the Science and Technology Program of Guangzhou under Grant 201904010373the Key Program of Marine Economy Development (Six Marine Industries) Special Foundation of Department of Natural Resources of Guangdong Province (GDNRC [2020]009)。
文摘Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the terminals. The application of WIPT to the underwater acoustic sensor networks(UWASNs) not only retains the long range communication capabilities, but also provides an auxiliary and convenient energy supplement way for the terminal sensors, and thus is a promising scheme to solve the energy-limited problem for the UWASNs. In this paper, we propose the integration of WIPT into the UWASNs and provide an overview on various enabling techniques for the WIPT based UWASNs(WIPT-UWASNs) as well as pointing out future research challenges and opportunities for WIPT-UWASNs.
基金supported in part by China High-Tech RD Program(863 Program) SS2015AA011306National Natural Science Foundation of China under Grants No.61379006,61401510,61501516,61521003
文摘This paper studies a simultaneous wireless information and power transfer system with multiple external eavesdroppers and internal curious users.We model the random network by Poisson cluster process in consideration of the case where eavesdroppers hide around certain targets.Focusing on the users that work in harvesting-transmitting mode with time switching receivers,we establish communication model via time division multiple access.On this basis,we propose a lightweight secure transmission scheme based on dual-thresholds for physical-layer security enhancement,which consists of two protocols applied to the downlink(DL) and uplink(UL) transmission respectively.In the DL,we design a dynamic information-power switching transmission protocol based on signal-to-noise ratio threshold,which provides an opportunistic approach to reform the fixed period allocation of information and power transfer;in the UL,an energy threshold is proposed for users to control the transmission,which is called a user-led on-off transmission protocol.Furthermore,we give a comprehensive performance analysis for the proposed scheme in terms of delay,reliability,security and secrecy throughput.Based on the analysis results,we optimize the two thresholds and the DL-UL allocationcoefficient to maximize the secrecy throughput.Simulation results show the proposed scheme can bring about a substantial secrecy gain.
基金the collaborative research program from the Microwave Energy Transmission Laboratory(METLAB)Research Insti⁃tute for Sustainable Humanosphere(RISH)Kyoto University and National Institute of Information and Communications Technology(NICT),JAPAN under Grant No.02401.
文摘Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative applications using SWIPT,which is mainly based on wireless energy harvesting from electromagnetic waves used in communications.Wireless power transfer that uses magnetrons has been developed for communication technologies.Injection-locked magnetrons that can be used to facilitate high-power SWIPT for several devices are reviewed in this paper.This new technology is expected to pave the way for promoting the application of SWIPT in a wide range of fields.
基金the financial support of National Natural Science Foundation of China(NSFC),Grant No.61971102,61871076the Key Research and Development Program of Zhejiang Province under Grant No.2022C01093.
文摘Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network. However, Simultaneous Wireless Information and Power Transfer (SWIPT) in the same RF bands is challenging. The majority of previous studies compared SWIPT performance to Gaussian signaling with an infinite alphabet, which is impossible to implement in any realistic communication system. In contrast, we study the SWIPT system in a well-known Nakagami-m wireless fading channel using practical modulation techniques with finite alphabet. The attainable rate-energy-reliability tradeoff and the corresponding rationale are revealed for fixed modulation schemes. Furthermore, an adaptive modulation-based transceiver is provided for further expanding the attainable rate-energy-reliability region based on various SWIPT performances of different modulation schemes. The modulation switching thresholds and transmit power allocation at the SWIPT transmitter and the power splitting ratios at the SWIPT receiver are jointly optimized to maximize the attainable spectrum efficiency of wireless information transfer while satisfying the WPT requirement and the instantaneous and average BER constraints. Numerical results demonstrate the SWIPT performance of various fixed modulation schemes in different fading conditions. The advantage of the adaptive modulation-based SWIPT transceiver is validated.
基金the National Key Research and Development Program of China under Grant Nos.2017YFA0700201,2017YFA0700202,2017YFA0700203,and 2021YFA1401001the 111 Project under Grant No.111⁃2⁃05,National Natural Science Foundation of China under Grant No.62001342+1 种基金Key Research and Development Program of Shaanxi under Grant No.2021TD⁃07Outstanding Youth Science Foundation of Shaanxi Province under Grant No.2019JC⁃15.
文摘Implementing self-sustainable wireless communication systems is urgent and challenging for 5G and 6G technologies.In this paper,we elaborate on a system solution using the programmable metasurface(PMS)for simultaneous wireless information and power transfers(SWIPT),offering an optimized wireless energy management network.Both transmitting and receiving sides of the proposed solution are presented in detail.On the transmitting side,employing the wireless power transfer(WPT)technique,we present versatile power conveying strategies for near-field or far-field targets,single or multiple targets,and equal or unequal power targets.On the receiving side,utilizing the wireless energy harvesting(WEH)technique,we report our work on multi-functional rectifying metasurfaces that collect the wirelessly transmitted energy and the ambient energy.More importantly,a numerical model based on the plane-wave angular spectrum method is investigated to accurately calculate the radiation fields of PMS in the Fresnel and Fraunhofer regions.With this model,the efficiencies of WPT between the transmitter and the receiver are analyzed.Finally,future research directions are discussed,and integrated PMS for wireless information and wireless power is outlined.
文摘无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进行信息解码的同时收集能量,与无小区大规模MIMO-NOMA优势互补。文中基于SWIPT研究无小区大规模MIMO-NOMA系统中的能量效率问题,通过联合优化功率分配系数和SWIPT的时隙切换(Time Switching,TS)系数,提高系统的能量效率。为了最大化能量效率,采用布谷鸟算法设计功率分配系数。考虑一种特殊情况,将所有终端的TS系数设置相同,进而推导了最佳TS系数的封闭表达式。仿真结果表明,相较于几种已有方案,文中提出的优化方案可以显著提升系统的能量效率。
基金financial support of Natural Science Foundation of China(No.61971102,62132004)MOST Major Research and Development Project(No.2021YFB2900204)+1 种基金Sichuan Science and Technology Program(No.2022YFH0022)Key Research and Development Program of Zhejiang Province(No.2022C01093)。
文摘Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.
基金supported by the Program of Song Shan Laboratory(included in the management of Major Science and Technology Program of Henan Province)(Nos.221100211300-03 and 221100211300-02)the National Key Research and Development Program of China(No.2018YFA0701904)+5 种基金the National Natural Science Foundation of China(Nos.62288101,61731010,62201139,and U22A2001)the 111 Project(No.111-2-05)the Jiangsu Province Frontier Leading Technology Basic Research Project(No.BK20212002)the Fundamental Research Funds for the Central Universities(No.2242022k60003)the National Natural Science Foundation(NSFC)for Distinguished Young Scholars of China(No.62225108)the Southeast University-China Mobile Research Institute Joint Innovation Center(No.R207010101125D9).
文摘Simultaneous wireless information and power transfer(SWIPT)architecture is commonly applied in wireless sensors or Internet of Things(IoT)devices,providing both wireless power sources and communication channels.However,the traditional SWIPT transmitter usually suffers from cross-talk distortion caused by the high peak-to-average power ratio of the input signal and the reduction of power amplifier efficiency.This paper proposes a SWIPT transmitting architecture based on an asynchronous space-time-coding digital metasurface(ASTCM).High-efficiency simultaneous transfer of information and power is achieved via energy distribution and information processing of the wireless monophonic signal reflected from the metasurface.We demonstrate the feasibility of the proposed method through theoretical derivations and experimental verification,which is therefore believed to have great potential in wireless communications and the IoT devices.
文摘为了提高无线携能通信(Simultaneous Wireless nformation and Power Transfer,SWIPT)通信系统的安全性,同时克服系统收发机硬件损伤(Hardware Impairments,HIs)的影响,提出一种硬件损伤下的智能反射面(Intelligent Reflecting Surface,IRS)辅助的SWIPT系统安全波束成形设计方法.考虑能量接收设备为潜在的窃听者,在基站最大发射功率、最小接收能量和IRS相移约束下,通过联合优化基站波束赋形矢量、人工噪声矢量和IRS的相移矩阵,构建系统安全速率最大化问题.针对该优化问题是非凸的,且优化变量是耦合的,提出一种基于交替优化和半正定松弛的有效算法来次优地解决该问题.仿真结果表明,本文所提算法能够在保障能量需求的同时,提升系统的安全性和抗硬件损伤能力.
基金supported in part by the National Natural Science Foundation of China under Grant 62201451in part by the Young Talent fund of University Association for Science and Technology in Shaanxi under Grant 20210121+1 种基金in part by the Shaanxi provincial special fund for Technological innovation guidance(2022CGBX-29)in part by BUPT Excellent Ph.D.Students Foundation under Grant CX2022106.
文摘This paper investigates the system outage performance of a simultaneous wireless information and power transfer(SWIPT)based two-way decodeand-forward(DF)relay network,where potential hardware impairments(HIs)in all transceivers are considered.After harvesting energy and decoding messages simultaneously via a power splitting scheme,the energy-limited relay node forwards the decoded information to both terminals.Each terminal combines the signals from the direct and relaying links via selection combining.We derive the system outage probability under independent but non-identically distributed Nakagami-m fading channels.It reveals an overall system ceiling(OSC)effect,i.e.,the system falls in outage if the target rate exceeds an OSC threshold that is determined by the levels of HIs.Furthermore,we derive the diversity gain of the considered network.The result reveals that when the transmission rate is below the OSC threshold,the achieved diversity gain equals the sum of the shape parameter of the direct link and the smaller shape parameter of the terminalto-relay links;otherwise,the diversity gain is zero.This is different from the amplify-and-forward(AF)strategy,under which the relaying links have no contribution to the diversity gain.Simulation results validate the analytical results and reveal that compared with the AF strategy,the SWIPT based two-way relaying links under the DF strategy are more robust to HIs and achieve a lower system outage probability.
文摘针对有源可重构智能表面(reconfigurable intelligent surface,RIS)辅助的同步无线信息与能量传输(simultaneous wireless information and power transfer,SWIPT)系统,提出了一种考虑公平性的能量资源采集分配算法,以解决因乘性衰落导致的公平性能量采集性能较差的问题。在有源RIS辅助的SWIPT系统采用功率切割架构实现信息与能量的同步传输,构建了以所有用户中最小的采集能量最大化为目标函数,用户信干噪比、有源RIS和基站发射功率、功率划分因子等满足需求为约束条件的联合资源分配问题。利用交替优化、半正定松弛、连续凸近似、罚函数等技术将不能直接解决的非凸问题转换成标准凸问题,提出了一种交替迭代的公平性采集能量算法。数值仿真结果表明,所提优化算法能够显著提高用户中能量资源分配最少的用户处采集到的能量值,保障通信网络中能量资源分配的公平性。
文摘本文研究了在毫微微蜂窝网络(femtocell network,FN)中,协同双小区系统的非正交多址接入(non-orthogonal multiple access,NOMA)与无线携能通信(simultaneous wireless information and power transfer,SWIPT)下行协作通信的中断性能,提出了一种边缘用户在邻基站及源基站随机中心用户共同协作的下行接入方案。所提方案共分为两个时隙:第一时隙内由两基站向所有用户广播叠加信号,提供中继服务的中心用户对其所接收的叠加信号逐级解码并收集能量。第二时隙,中心用户将其第一时隙内所收集的能量作为额外功率资源,在优先保证自身通信质量的前提下对成功解码的边缘用户信息进行再编码转发。基于空间均质泊松点过程(Poisson point process,PPP)中心用户的位置模型,推导了中心用户与边缘用户平均中断概率的表达式,进行了蒙特卡罗仿真验证,同时分析了各仿真参数(中心用户分布半径、用户阈值速率、路径损耗指数等)与中心用户、边缘用户平均中断概率的关系。结果表明:所提方案可以改善边缘用户的下行接入中断性能和系统吞吐量。
基金supported by the National Natural Science Foundation of China 62001051.
文摘Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although the intelligent reflecting surface(IRS)can be adopted to create effective virtual links to address the mmWave blockage problem,the conventional solutions only adopt IRS in the downlink from the Base Station(BS)to the users to enhance the received signal strength.In practice,the reflection of IRS is also applicable to the uplink to improve the spectral efficiency.It is a challenging to jointly optimize IRS beamforming and system resource allocation for wireless energy acquisition and information transmission.In this paper,we first design a Low-Energy Adaptive Clustering Hierarchy(LEACH)clustering protocol for clustering and data collection.Then,the problem of maximizing the minimum system spectral efficiency is constructed by jointly optimizing the transmit power of sensor devices,the uplink and downlink transmission times,the active beamforming at the BS,and the IRS dynamic beamforming.To solve this non-convex optimization problem,we propose an alternating optimization(AO)-based joint solution algorithm.Simulation results show that the use of IRS dynamic beamforming can significantly improve the spectral efficiency of the system,and ensure the reliability of equipment communication and the sustainability of energy supply under NLOS link.
文摘为了延长无线通信网络的寿命,提高系统的频谱效率和可靠性,扩大信号覆盖范围,对无线携能传输(Simultaneous Wireless Information and Power Transfer,SWIPT)和非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术进行研究,给出了一种简单的无线携能传输的非正交多址接入(Simultaneous Wireless Information and Power Transfer Non-Orthogonal Multiple Access,SWIPT-NOMA)传输策略。在该策略中,近用户利用功率分割(Power-Splitting,PS)协议收集基站发射信号的能量转发解码数据和自身数据,同时实现基站向远近两用户、近用户向远用户的数据传输。在考虑非线性能量收集(Energy Harvesting,EH)的基础上,推导了系统的中断概率的闭式结果,并进一步给出了高信噪比(Signal-to-Noise Ratio,SNR)下的中断性能下限。最后,通过仿真分析验证了理论推导的正确性,并得出了系统参数对系统性能的影响规律。
基金supported by the National Natural Science Foundation of China (No. 61971077)the Natural Science Foundation of Chongqing, China (No. cstc2021jcyj-msxmX0458)+3 种基金the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2022D06)the Fundamental Research Funds for the Central Universities (No. 2020CDCGTX074)the Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu (No. BK20212001)the Natural Science Research Project of Jiangsu Higher Education Institutions (No. 21KJB510034)。
文摘Micro-UAV swarms usually generate massive data when performing tasks. These data can be harnessed with various machine learning(ML) algorithms to improve the swarm’s intelligence. To achieve this goal while protecting swarm data privacy, federated learning(FL) has been proposed as a promising enabling technology. During the model training process of FL, the UAV may face an energy scarcity issue due to the limited battery capacity. Fortunately, this issue is potential to be tackled via simultaneous wireless information and power transfer(SWIPT). However, the integration of SWIPT and FL brings new challenges to the system design that have yet to be addressed, which motivates our work. Specifically,in this paper, we consider a micro-UAV swarm network consisting of one base station(BS) and multiple UAVs, where the BS uses FL to train an ML model over the data collected by the swarm. During training, the BS broadcasts the model and energy simultaneously to the UAVs via SWIPT, and each UAV relies on its harvested and battery-stored energy to train the received model and then upload it to the BS for model aggregation. To improve the learning performance, we formulate a problem of maximizing the percentage of scheduled UAVs by jointly optimizing UAV scheduling and wireless resource allocation. The problem is a challenging mixed integer nonlinear programming problem and is NP-hard in general. By exploiting its special structure property, we develop two algorithms to achieve the optimal and suboptimal solutions, respectively. Numerical results show that the suboptimal algorithm achieves a near-optimal performance under various network setups, and significantly outperforms the existing representative baselines. considered.
基金the Hebei Key and Research Program,China(No.19255901D)。
文摘In this paper,we investigate the secrecy outage performance in simultaneous wireless information and power transfer(SWIPT)systems taking artificial noise assistance into account.Multiple antennas in the source and a single antenna in both the legitimate receiver and the eavesdropper are assumed.Specifically,the transmitted signal at the source is composed of two parts,where the first part is the information symbols and the other is the noise for the eavesdropper.To avoid making noise in the legitimate receiver,these two parts in the transmitted signals are modulated into two orthogonal dimensions according to the instantaneous channel state between the source and the legitimate receiver.We derive an approximate closed-form expression for the secrecy outage probability(SOP)by adopting the Gauss-Laguerre quadrature(GLQ)method,where the gap between the exact SOP and our approximate SOP converges with increase of the summation terms in the GLQ.To obtain the secrecy diversity order and secrecy array gain for the considered SWIPT system,the asymptotic result of the SOP is also derived.This is tight in the high signal-to-noise ratio region.A novel and robust SOP approximation is also analyzed given a small variance of the signal-to-interference-plus-noise ratio at the eavesdropper.Some selected Monte-Carlo numerical results are presented to validate the correctness of the derived closed-form expressions.