In this paper, we use the Sinc Function to solve the Fredholme-Volterra Integral Equations. By using collocation method we estimate a solution for Fredholme-Volterra Integral Equations. Finally convergence of this met...In this paper, we use the Sinc Function to solve the Fredholme-Volterra Integral Equations. By using collocation method we estimate a solution for Fredholme-Volterra Integral Equations. Finally convergence of this method will be discussed and efficiency of this method is shown by some examples. Numerical examples show that the approximate solutions have a good degree of accuracy.展开更多
In this work the authors develop the n-dimensional sinc function theory in the several complex variables setting. In terms of the corresponding Paley-Wiener theorem the exact sinc interpolation and quadrature are esta...In this work the authors develop the n-dimensional sinc function theory in the several complex variables setting. In terms of the corresponding Paley-Wiener theorem the exact sinc interpolation and quadrature are established. Exponential convergence rate of the error estimates for band-limited functions in n-dimensional strips are obtained.展开更多
In this note, we discuss a class of so-called generalized sampling functions. These functions are defined to be the inverse Fourier transform of a family of piecewise constant functions that are either square integrab...In this note, we discuss a class of so-called generalized sampling functions. These functions are defined to be the inverse Fourier transform of a family of piecewise constant functions that are either square integrable or Lebegue integrable on the real number line. They are in fact the generalization of the classic sinc function. Two approaches of constructing the generalized sampling functions are reviewed. Their properties such as cardinality, orthogonality, and decaying properties are discussed. The interactions of those functions and Hilbert transformer are also discussed.展开更多
Sinc methods are now recognized as an efficient numerical method for problems whose solutions may have singularities, or infinite domains, or boundary layers. This work deals with the sinc-collocation method for solvi...Sinc methods are now recognized as an efficient numerical method for problems whose solutions may have singularities, or infinite domains, or boundary layers. This work deals with the sinc-collocation method for solving linear and nonlinear system of second order differential equation. The method is then tested on linear and nonlinear examples and a comparison with B-spline method is made. It is shown that the sinc-collocation method yields better results.展开更多
A new algorithm is presented for solving Troesch’s problem. The numerical scheme based on the sinc-collocation technique is deduced. The equation is reduced to systems of nonlinear algebraic equations. Some numerical...A new algorithm is presented for solving Troesch’s problem. The numerical scheme based on the sinc-collocation technique is deduced. The equation is reduced to systems of nonlinear algebraic equations. Some numerical experiments are made. Compared with the modified homotopy perturbation technique (MHP), the variational iteration method and the Adomian decomposition method. It is shown that the sinc-collocation method yields better results.展开更多
We consider the problem of approximating two, possibly unrelated probability distributions from a single complex-valued function and its Fourier transform. We show that this problem always has a solution within a spec...We consider the problem of approximating two, possibly unrelated probability distributions from a single complex-valued function and its Fourier transform. We show that this problem always has a solution within a specified degree of accuracy, provided the distributions satisfy the necessary regularity conditions. We describe the algorithm and construction of and provide examples of approximating several pairs of distributions using the algorithm.展开更多
文摘In this paper, we use the Sinc Function to solve the Fredholme-Volterra Integral Equations. By using collocation method we estimate a solution for Fredholme-Volterra Integral Equations. Finally convergence of this method will be discussed and efficiency of this method is shown by some examples. Numerical examples show that the approximate solutions have a good degree of accuracy.
文摘In this work the authors develop the n-dimensional sinc function theory in the several complex variables setting. In terms of the corresponding Paley-Wiener theorem the exact sinc interpolation and quadrature are established. Exponential convergence rate of the error estimates for band-limited functions in n-dimensional strips are obtained.
文摘In this note, we discuss a class of so-called generalized sampling functions. These functions are defined to be the inverse Fourier transform of a family of piecewise constant functions that are either square integrable or Lebegue integrable on the real number line. They are in fact the generalization of the classic sinc function. Two approaches of constructing the generalized sampling functions are reviewed. Their properties such as cardinality, orthogonality, and decaying properties are discussed. The interactions of those functions and Hilbert transformer are also discussed.
文摘Sinc methods are now recognized as an efficient numerical method for problems whose solutions may have singularities, or infinite domains, or boundary layers. This work deals with the sinc-collocation method for solving linear and nonlinear system of second order differential equation. The method is then tested on linear and nonlinear examples and a comparison with B-spline method is made. It is shown that the sinc-collocation method yields better results.
文摘A new algorithm is presented for solving Troesch’s problem. The numerical scheme based on the sinc-collocation technique is deduced. The equation is reduced to systems of nonlinear algebraic equations. Some numerical experiments are made. Compared with the modified homotopy perturbation technique (MHP), the variational iteration method and the Adomian decomposition method. It is shown that the sinc-collocation method yields better results.
文摘We consider the problem of approximating two, possibly unrelated probability distributions from a single complex-valued function and its Fourier transform. We show that this problem always has a solution within a specified degree of accuracy, provided the distributions satisfy the necessary regularity conditions. We describe the algorithm and construction of and provide examples of approximating several pairs of distributions using the algorithm.