Feature Selection(FS)is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy.However,due to the high dimensionality and complexity of t...Feature Selection(FS)is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy.However,due to the high dimensionality and complexity of the dataset,most optimization algorithms for feature selection suffer from a balance issue during the search process.Therefore,the present paper proposes a hybrid Sine-Cosine Chimp Optimization Algorithm(SCChOA)to address the feature selection problem.In this approach,firstly,a multi-cycle iterative strategy is designed to better combine the Sine-Cosine Algorithm(SCA)and the Chimp Optimization Algorithm(ChOA),enabling a more effective search in the objective space.Secondly,an S-shaped transfer function is introduced to perform binary transformation on SCChOA.Finally,the binary SCChOA is combined with the K-Nearest Neighbor(KNN)classifier to form a novel binary hybrid wrapper feature selection method.To evaluate the performance of the proposed method,16 datasets from different dimensions of the UCI repository along with four evaluation metrics of average fitness value,average classification accuracy,average feature selection number,and average running time are considered.Meanwhile,seven state-of-the-art metaheuristic algorithms for solving the feature selection problem are chosen for comparison.Experimental results demonstrate that the proposed method outperforms other compared algorithms in solving the feature selection problem.It is capable of maximizing the reduction in the number of selected features while maintaining a high classification accuracy.Furthermore,the results of statistical tests also confirm the significant effectiveness of this method.展开更多
This paper proposes an improved sine-cosine algorithm(ISCA)based 2-DOF-PID controller for load frequency control.A three-area test system is built for study,while some physical constraints(nonlinearities)are considere...This paper proposes an improved sine-cosine algorithm(ISCA)based 2-DOF-PID controller for load frequency control.A three-area test system is built for study,while some physical constraints(nonlinearities)are considered for the investigation of a realistic power system.The proposed method is used as the parameter optimizer of the LFC control-ler in different scenarios.The 2-DOF-PID controllers are used because of their capability of fast disturbance rejection without significant increase of overshoot in set-point tracking.The 2-DOF-PID controllers’efficacy is observed by examining the responses with the outcomes obtained with PID and FOPID controllers.The simulation results with the suggested scheme are correlated with some of the existing algorithms,such as SCA,SSA,ALO,and PSO in three dif-ferent scenarios,i.e.,a disturbance in two areas,in three areas,and in the presence of physical constraints.In addition,the study is extended to a four-area power system.Statistical analysis is performed using the Wilcoxon Sign Rank Test(WSRT)on 20 independent runs.This confirms the supremacy of the proposed method.展开更多
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio...This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.展开更多
Firstly, using the improved homogeneous balance method, an auto-Darboux transformation (ADT) for the Brusselator reaction diffusion model is found. Based on the ADT, several exact solutions are obtained which contain ...Firstly, using the improved homogeneous balance method, an auto-Darboux transformation (ADT) for the Brusselator reaction diffusion model is found. Based on the ADT, several exact solutions are obtained which contain some authors' results known. Secondly, by using a series of transformations, the model is reduced into a nonlinear reaction diffusion equation and then through using sine-cosine method, more exact solutions are found which contain soliton solutions.展开更多
According to the improved sine-cosine method and Wu-elimination method, a new algorithm to construct solitary wave solutions for systems of nonlinear evolution equations is put forward. The algorithm has some conclusi...According to the improved sine-cosine method and Wu-elimination method, a new algorithm to construct solitary wave solutions for systems of nonlinear evolution equations is put forward. The algorithm has some conclusions which are better than what the hyperbolic function method known does and simpler in use. With the aid of MATHEMATICA, the algorithm can be carried out in computer.展开更多
Generative Adversarial Networks(GANs)are neural networks that allow models to learn deep representations without requiring a large amount of training data.Semi-Supervised GAN Classifiers are a recent innovation in GAN...Generative Adversarial Networks(GANs)are neural networks that allow models to learn deep representations without requiring a large amount of training data.Semi-Supervised GAN Classifiers are a recent innovation in GANs,where GANs are used to classify generated images into real and fake and multiple classes,similar to a general multi-class classifier.However,GANs have a sophisticated design that can be challenging to train.This is because obtaining the proper set of parameters for all models-generator,discriminator,and classifier is complex.As a result,training a single GAN model for different datasets may not produce satisfactory results.Therefore,this study proposes an SGAN model(Semi-Supervised GAN Classifier).First,a baseline model was constructed.The model was then enhanced by leveraging the Sine-Cosine Algorithm and Synthetic Minority Oversampling Technique(SMOTE).SMOTE was used to address class imbalances in the dataset,while Sine Cosine Algorithm(SCA)was used to optimize the weights of the classifier models.The optimal set of hyperparameters(learning rate and batch size)were obtained using grid manual search.Four well-known benchmark datasets and a set of evaluation measures were used to validate the proposed model.The proposed method was then compared against existing models,and the results on each dataset were recorded and demonstrated the effectiveness of the proposed model.The proposed model successfully showed improved test accuracy scores of 1%,2%,15%,and 5%on benchmarking multimedia datasets;Modified National Institute of Standards and Technology(MNIST)digits,Fashion MNIST,Pneumonia Chest X-ray,and Facial Emotion Detection Dataset,respectively.展开更多
In this paper, by using the sine-cosine method, the extended tanh-method, and the rational hyperbolic functions method, we study a class of nonlinear equations which derived from a fourth order analogue of generalized...In this paper, by using the sine-cosine method, the extended tanh-method, and the rational hyperbolic functions method, we study a class of nonlinear equations which derived from a fourth order analogue of generalized Camassa-Holm equation. It is shown that this class gives compactons, solitary wave solutions, solitons, and periodic wave solutions. The change of the physical structure of the solutions is caused by variation of the exponents and the coefficients of the derivatives.展开更多
In this paper, we present Yan’s sine-cosine method and Wazwaz’s sine-cosine method to solve the (2+1)-dimensional Zoomeron equation. New exact travelling wave solutions are explicitly obtained with the aid of symbol...In this paper, we present Yan’s sine-cosine method and Wazwaz’s sine-cosine method to solve the (2+1)-dimensional Zoomeron equation. New exact travelling wave solutions are explicitly obtained with the aid of symbolic computation. The study confirms the power of the two schemes.展开更多
In this paper,the generalized dissipative Kawahara equation in the sense of conformable fractional derivative is presented and solved by applying the tanh-coth-expansion and sine-cosine function techniques.The quadrat...In this paper,the generalized dissipative Kawahara equation in the sense of conformable fractional derivative is presented and solved by applying the tanh-coth-expansion and sine-cosine function techniques.The quadratic-case and cubic-case are investigated for the proposed model.Expected solutions are obtained with highlighting to the effect of the presence of the alternative fractional-derivative and the effect of the added dissipation term to the generalized Kawahara equation.Some graphical analysis is presented to support the findings of the paper.Finally,we believe that the obtained results in this work will be important and valuable in nonlinear sciences and ocean engineering.展开更多
基金supported by the Key Research and Development Project of Hubei Province(No.2023BAB094)the Key Project of Science and Technology Research Program of Hubei Educational Committee(No.D20211402)the Teaching Research Project of Hubei University of Technology(No.2020099).
文摘Feature Selection(FS)is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy.However,due to the high dimensionality and complexity of the dataset,most optimization algorithms for feature selection suffer from a balance issue during the search process.Therefore,the present paper proposes a hybrid Sine-Cosine Chimp Optimization Algorithm(SCChOA)to address the feature selection problem.In this approach,firstly,a multi-cycle iterative strategy is designed to better combine the Sine-Cosine Algorithm(SCA)and the Chimp Optimization Algorithm(ChOA),enabling a more effective search in the objective space.Secondly,an S-shaped transfer function is introduced to perform binary transformation on SCChOA.Finally,the binary SCChOA is combined with the K-Nearest Neighbor(KNN)classifier to form a novel binary hybrid wrapper feature selection method.To evaluate the performance of the proposed method,16 datasets from different dimensions of the UCI repository along with four evaluation metrics of average fitness value,average classification accuracy,average feature selection number,and average running time are considered.Meanwhile,seven state-of-the-art metaheuristic algorithms for solving the feature selection problem are chosen for comparison.Experimental results demonstrate that the proposed method outperforms other compared algorithms in solving the feature selection problem.It is capable of maximizing the reduction in the number of selected features while maintaining a high classification accuracy.Furthermore,the results of statistical tests also confirm the significant effectiveness of this method.
文摘This paper proposes an improved sine-cosine algorithm(ISCA)based 2-DOF-PID controller for load frequency control.A three-area test system is built for study,while some physical constraints(nonlinearities)are considered for the investigation of a realistic power system.The proposed method is used as the parameter optimizer of the LFC control-ler in different scenarios.The 2-DOF-PID controllers are used because of their capability of fast disturbance rejection without significant increase of overshoot in set-point tracking.The 2-DOF-PID controllers’efficacy is observed by examining the responses with the outcomes obtained with PID and FOPID controllers.The simulation results with the suggested scheme are correlated with some of the existing algorithms,such as SCA,SSA,ALO,and PSO in three dif-ferent scenarios,i.e.,a disturbance in two areas,in three areas,and in the presence of physical constraints.In addition,the study is extended to a four-area power system.Statistical analysis is performed using the Wilcoxon Sign Rank Test(WSRT)on 20 independent runs.This confirms the supremacy of the proposed method.
文摘This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.
基金国家自然科学基金,NKBRD of China,Doctor Foundation of Education Commission of China
文摘Firstly, using the improved homogeneous balance method, an auto-Darboux transformation (ADT) for the Brusselator reaction diffusion model is found. Based on the ADT, several exact solutions are obtained which contain some authors' results known. Secondly, by using a series of transformations, the model is reduced into a nonlinear reaction diffusion equation and then through using sine-cosine method, more exact solutions are found which contain soliton solutions.
文摘According to the improved sine-cosine method and Wu-elimination method, a new algorithm to construct solitary wave solutions for systems of nonlinear evolution equations is put forward. The algorithm has some conclusions which are better than what the hyperbolic function method known does and simpler in use. With the aid of MATHEMATICA, the algorithm can be carried out in computer.
基金This research was supported by Universiti Teknologi PETRONAS,under the Yayasan Universiti Teknologi PETRONAS(YUTP)Fundamental Research Grant Scheme(YUTPFRG/015LC0-308).
文摘Generative Adversarial Networks(GANs)are neural networks that allow models to learn deep representations without requiring a large amount of training data.Semi-Supervised GAN Classifiers are a recent innovation in GANs,where GANs are used to classify generated images into real and fake and multiple classes,similar to a general multi-class classifier.However,GANs have a sophisticated design that can be challenging to train.This is because obtaining the proper set of parameters for all models-generator,discriminator,and classifier is complex.As a result,training a single GAN model for different datasets may not produce satisfactory results.Therefore,this study proposes an SGAN model(Semi-Supervised GAN Classifier).First,a baseline model was constructed.The model was then enhanced by leveraging the Sine-Cosine Algorithm and Synthetic Minority Oversampling Technique(SMOTE).SMOTE was used to address class imbalances in the dataset,while Sine Cosine Algorithm(SCA)was used to optimize the weights of the classifier models.The optimal set of hyperparameters(learning rate and batch size)were obtained using grid manual search.Four well-known benchmark datasets and a set of evaluation measures were used to validate the proposed model.The proposed method was then compared against existing models,and the results on each dataset were recorded and demonstrated the effectiveness of the proposed model.The proposed model successfully showed improved test accuracy scores of 1%,2%,15%,and 5%on benchmarking multimedia datasets;Modified National Institute of Standards and Technology(MNIST)digits,Fashion MNIST,Pneumonia Chest X-ray,and Facial Emotion Detection Dataset,respectively.
文摘In this paper, by using the sine-cosine method, the extended tanh-method, and the rational hyperbolic functions method, we study a class of nonlinear equations which derived from a fourth order analogue of generalized Camassa-Holm equation. It is shown that this class gives compactons, solitary wave solutions, solitons, and periodic wave solutions. The change of the physical structure of the solutions is caused by variation of the exponents and the coefficients of the derivatives.
文摘In this paper, we present Yan’s sine-cosine method and Wazwaz’s sine-cosine method to solve the (2+1)-dimensional Zoomeron equation. New exact travelling wave solutions are explicitly obtained with the aid of symbolic computation. The study confirms the power of the two schemes.
文摘In this paper,the generalized dissipative Kawahara equation in the sense of conformable fractional derivative is presented and solved by applying the tanh-coth-expansion and sine-cosine function techniques.The quadratic-case and cubic-case are investigated for the proposed model.Expected solutions are obtained with highlighting to the effect of the presence of the alternative fractional-derivative and the effect of the added dissipation term to the generalized Kawahara equation.Some graphical analysis is presented to support the findings of the paper.Finally,we believe that the obtained results in this work will be important and valuable in nonlinear sciences and ocean engineering.