Singhbhum Shear Zone (SSZ) is a geologically rich belt with structures like faults and folds being the distinctive features. Due to these characteristics this area has been an important centre of studies since past fe...Singhbhum Shear Zone (SSZ) is a geologically rich belt with structures like faults and folds being the distinctive features. Due to these characteristics this area has been an important centre of studies since past few decades. With the advent of Remote Sensing and GIS, it has been possible to study and interprete geological setting of any area in the laboratory itself without even visiting the field again and again. The present study aims to investigate the geology of the SSZ from ASTER DEM by observing the elevation, as-pect, texture, pattern etc of shaded relief images. This can prove to be an excellent supplementary information database for interpretations along with other data.展开更多
Singhbhum Shear Zone is a highly mineralized zone having variety of minerals, predominantly those of uranium, copper and some sulphide minerals. From Remote Sensing data it is possible to decipher the regional litholo...Singhbhum Shear Zone is a highly mineralized zone having variety of minerals, predominantly those of uranium, copper and some sulphide minerals. From Remote Sensing data it is possible to decipher the regional lithology, tectonic fabric and also the geomorphic details of a terrain which aid precisely in targeting of metals and minerals. Mapping of mineralized zones can be done using Geospatial Technology in a GIS platform. The present study includes creation of various maps like lithological map, geomorphological map, contours and slope map using satellite data like IRS LISSIV and ASTER DEM which can be used to interprete and correlate the various mineral prospective zones in the study area. Even the alterations of the prevalent mineral zones can be mapped for further utilization strategies. The present work is based on the investigations being carried under ISROSAC Respond Project (Dept. of Space, Govt. of India SAC Code: OGP62, ISRO Code: 10/4/556).展开更多
Bagjata area is a part of Singhbhum Shear Zone (SSZ) falling within Survey of India Toposheets No. 73J/6, J/7, J/10 and J/11. The Subarnarekha River, Sankh Nala and Gohala faults are major disconti-nuities in the area...Bagjata area is a part of Singhbhum Shear Zone (SSZ) falling within Survey of India Toposheets No. 73J/6, J/7, J/10 and J/11. The Subarnarekha River, Sankh Nala and Gohala faults are major disconti-nuities in the area. An attempt has been made to simulate the regional groundwater hydrodynamics. Few dug-wells were monitored for more than a year to find out the seasonal fluctuation changes in the drainage pattern and groundwater level. Groundwater samples were analyzed for physical and chemical analysis. Results show that one of the major discontinuities in the area-the Gohala Fault controls largely the geohydrodynamics of the area. Discharge of groundwater is of effluence type during all the three seasons. The water is safe for drinking as most of the contaminations are much below the permissible limits. No such previous work has been attempted in this area to investigate the groundwater dynamics and hence the selection of few parameters were assumed and taken from similar surrounding aquifer systems for modeling. The groundwater flow was also assumed to be in steady state. The present paper deals with some important aspects related to the hydrological significance of the Bagjata Uranium mining area and its relationship with the local climate, physiography and meteorology. An attempt is also made to simulate the status of groundwater conditions of hard rock aquifers in the region. Further it envisages the necessity of such study being undertaken in the entire SSZ belt to secure precise information about the surface manifestations which govern the groundwater recharge potentiality as well as its quality.展开更多
文摘Singhbhum Shear Zone (SSZ) is a geologically rich belt with structures like faults and folds being the distinctive features. Due to these characteristics this area has been an important centre of studies since past few decades. With the advent of Remote Sensing and GIS, it has been possible to study and interprete geological setting of any area in the laboratory itself without even visiting the field again and again. The present study aims to investigate the geology of the SSZ from ASTER DEM by observing the elevation, as-pect, texture, pattern etc of shaded relief images. This can prove to be an excellent supplementary information database for interpretations along with other data.
文摘Singhbhum Shear Zone is a highly mineralized zone having variety of minerals, predominantly those of uranium, copper and some sulphide minerals. From Remote Sensing data it is possible to decipher the regional lithology, tectonic fabric and also the geomorphic details of a terrain which aid precisely in targeting of metals and minerals. Mapping of mineralized zones can be done using Geospatial Technology in a GIS platform. The present study includes creation of various maps like lithological map, geomorphological map, contours and slope map using satellite data like IRS LISSIV and ASTER DEM which can be used to interprete and correlate the various mineral prospective zones in the study area. Even the alterations of the prevalent mineral zones can be mapped for further utilization strategies. The present work is based on the investigations being carried under ISROSAC Respond Project (Dept. of Space, Govt. of India SAC Code: OGP62, ISRO Code: 10/4/556).
文摘Bagjata area is a part of Singhbhum Shear Zone (SSZ) falling within Survey of India Toposheets No. 73J/6, J/7, J/10 and J/11. The Subarnarekha River, Sankh Nala and Gohala faults are major disconti-nuities in the area. An attempt has been made to simulate the regional groundwater hydrodynamics. Few dug-wells were monitored for more than a year to find out the seasonal fluctuation changes in the drainage pattern and groundwater level. Groundwater samples were analyzed for physical and chemical analysis. Results show that one of the major discontinuities in the area-the Gohala Fault controls largely the geohydrodynamics of the area. Discharge of groundwater is of effluence type during all the three seasons. The water is safe for drinking as most of the contaminations are much below the permissible limits. No such previous work has been attempted in this area to investigate the groundwater dynamics and hence the selection of few parameters were assumed and taken from similar surrounding aquifer systems for modeling. The groundwater flow was also assumed to be in steady state. The present paper deals with some important aspects related to the hydrological significance of the Bagjata Uranium mining area and its relationship with the local climate, physiography and meteorology. An attempt is also made to simulate the status of groundwater conditions of hard rock aquifers in the region. Further it envisages the necessity of such study being undertaken in the entire SSZ belt to secure precise information about the surface manifestations which govern the groundwater recharge potentiality as well as its quality.