期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Research on single image super-resolution based on very deep super-resolution convolutional neural network
1
作者 HUANG Zhangyu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期276-283,共8页
Single image super-resolution(SISR)is a fundamentally challenging problem because a low-resolution(LR)image can correspond to a set of high-resolution(HR)images,while most are not expected.Recently,SISR can be achieve... Single image super-resolution(SISR)is a fundamentally challenging problem because a low-resolution(LR)image can correspond to a set of high-resolution(HR)images,while most are not expected.Recently,SISR can be achieved by a deep learning-based method.By constructing a very deep super-resolution convolutional neural network(VDSRCNN),the LR images can be improved to HR images.This study mainly achieves two objectives:image super-resolution(ISR)and deblurring the image from VDSRCNN.Firstly,by analyzing ISR,we modify different training parameters to test the performance of VDSRCNN.Secondly,we add the motion blurred images to the training set to optimize the performance of VDSRCNN.Finally,we use image quality indexes to evaluate the difference between the images from classical methods and VDSRCNN.The results indicate that the VDSRCNN performs better in generating HR images from LR images using the optimized VDSRCNN in a proper method. 展开更多
关键词 single image super-resolution(sisr) very deep super-resolution convolutional neural network(VDSRCNN) motion blurred image image quality index
下载PDF
Adaptive deep residual network for single image super-resolution 被引量:4
2
作者 Shuai Liu Ruipeng Gang +1 位作者 Chenghua Li Ruixia Song 《Computational Visual Media》 CSCD 2019年第4期391-401,共11页
In recent years,deep learning has achieved great success in the field of image processing.In the single image super-resolution(SISR)task,the convolutional neural network(CNN)extracts the features of the image through ... In recent years,deep learning has achieved great success in the field of image processing.In the single image super-resolution(SISR)task,the convolutional neural network(CNN)extracts the features of the image through deeper layers,and has achieved impressive results.In this paper,we propose a single image super-resolution model based on Adaptive Deep Residual named as ADR-SR,which uses the Input Output Same Size(IOSS)structure,and releases the dependence of upsampling layers compared with the existing SR methods.Specifically,the key element of our model is the Adaptive Residual Block(ARB),which replaces the commonly used constant factor with an adaptive residual factor.The experiments prove the effectiveness of our ADR-SR model,which can not only reconstruct images with better visual effects,but also get better objective performances. 展开更多
关键词 single image super-resolution(sisr) ADAPTIVE DEEP RESIDUAL network DEEP learning
原文传递
基于深度学习的单图像超分辨率重建研究综述 被引量:24
3
作者 南方哲 钱育蓉 +1 位作者 行艳妮 赵京霞 《计算机应用研究》 CSCD 北大核心 2020年第2期321-326,共6页
为深入了解基于深度学习的单图像超分辨率重建(SISR)的发展,把握当前研究的热点和方向,针对现有基于深度学习的单图像超分辨率重建模型进行了梳理。介绍了相关深度学习算法和基于深度学习的模型以及评价指标,并通过实验对比分析现有模... 为深入了解基于深度学习的单图像超分辨率重建(SISR)的发展,把握当前研究的热点和方向,针对现有基于深度学习的单图像超分辨率重建模型进行了梳理。介绍了相关深度学习算法和基于深度学习的模型以及评价指标,并通过实验对比分析现有模型的性能,其目的在于从本质上了解基于深度学习的单图像超分辨率重建模型的优势;对单图像超分辨率重建的关键问题进行了总结,并对未来的发展趋势进行了展望。 展开更多
关键词 单图像超分辨率重建 深度学习 密集卷积网络 生成式对抗网络
下载PDF
基于稀疏神经网络的图像超分辨率重建算法
4
作者 黎浩民 李光平 《计算机工程》 CAS CSCD 北大核心 2022年第7期247-253,共7页
部分基于深度学习的图像超分辨率重建算法通过扩展网络层的深度来提高网络模型的整体特征表达能力。然而,一味过度地扩展网络的深度会造成网络模型过参数化和复杂化,并且冗余的网络参数会增加特征表达的不稳定性。在LTH剪枝算法基础上... 部分基于深度学习的图像超分辨率重建算法通过扩展网络层的深度来提高网络模型的整体特征表达能力。然而,一味过度地扩展网络的深度会造成网络模型过参数化和复杂化,并且冗余的网络参数会增加特征表达的不稳定性。在LTH剪枝算法基础上改变权重参数并使用均衡学习策略,提出一种适用于图像超分辨率重建任务的神经网络非结构化剪枝算法RLTH。在不改变网络结构和不增加计算复杂度的前提下,通过搜索原始网络模型的最优稀疏子网络排除冗余参数带来的影响,在有限的参数资源中捕获更细粒度和丰富的图像特征,进而提高网络模型的整体特征表达能力。基于Set5、Set14和BSD100测试集的实验结果表明,与原始网络模型和应用LTH剪枝算法相比,应用RLTH算法获得的重建图像PSNR和SSIM均得到提升,且具有更丰富的细节特征,整体和局部轮廓更清晰。 展开更多
关键词 单帧图像超分辨率重建 神经网络 非结构化剪枝 深度学习 稀疏网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部