期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
EFFECT OF Z-PINS’ DIAMETER,SPACING AND OVERLAP LENGTH ON CONNECTING PERFORMANCE OF CMC SINGLE LAP JOINT 被引量:4
1
作者 Yongqiang Tao Guiqiong Jiao Bo Wang Yanjun Chang 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第5期461-471,共11页
The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length... The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length of the single lap joint is 15 mm, 20 mm, 23 mm, 37 mm, and 60 mm, respectively. The experimental results indicate that the final failure modes of the joints can be divided into two groups, (a) the bond-line stops debonding until crack encounters Z-pins; and then the adherends break at the location of Z-pins, when overlap length is more than 20 mm; (b) the bond-line detaches entirely and Z-pins are drawn from adherends, when overlap length is equal to 15 mm. A simple efficient computational approach is presented for analyzing the benefit of through-thickness pins for restricting failure in the single lap joints. Here, the mechanics problem is simplified by representing the effect of the pins by tractions acting on the fracture surfaces of the cracked bond-line. The tractions are prescribed as functions of the crack displacement, which are available in simple forms that summarize the complex deformations to a reasonable accuracy. The resulting model can be used to track the evolution of complete failure mechanisms, for example, bond-line initial delamination and ultimate failure associated with Z-pin pullout, ultimate failure of the adherends. The paper simulates connecting performance of the single lap joints with different Z-pins' diameter, spacing and overlap length; the numerical results agree with the experimental results; the numerical results indicate enlarging diameter and decreasing spacing of Z-pins are in favor of improving the connecting performance of the joints. By numerical analysis method, the critical overlap length that lies between two final failure modes is between 18 mm and 19 mm, when Z-pins' diameter and spacing are 0.4 mm, 5 mm, respectively. 展开更多
关键词 ceramic matrix composite (CMC) single lap joint Z-PINS connecting performance overlap length DIAMETER SPACING
下载PDF
A novel technique for measuring 3D deformation of adhesively bonded single lap joint 被引量:3
2
作者 Bing Pan LuJun Ma Yong Xia 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第1期58-65,共8页
An easy-to-implement yet practical single-camera microscopic stereo-digital image correlation(stereo-DIC) technique is proposed for surface three-dimensional(3D) deformation measurement of singe lap joint(SLJ) samples... An easy-to-implement yet practical single-camera microscopic stereo-digital image correlation(stereo-DIC) technique is proposed for surface three-dimensional(3D) deformation measurement of singe lap joint(SLJ) samples subjected to mechanical loads. The basic principles, optical configurations and implementation procedures of the proposed technique are described in detail. Compared with existing single-camera 2D-DIC technique, which has been regularly used for in-plane deformation measurement of a SLJ specimen, the proposed technique offers the special merit of simultaneously determining all the three displacement components by simply adding two additional optical elements to existing single-camera 2D-DIC systems. The accuracy and effectiveness of the proposed technique is demonstrated by measuring the 3D deformation of a SLJ specimen subjected to quasi-static tensile loads. 展开更多
关键词 digital image correlation single lap joint deformation measurement
原文传递
Mechanical behaviour of adhesively single lap joint under buckling conditions 被引量:1
3
作者 Ferhat KADIOGLU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期154-164,共11页
Adhesive Single Lap Joints have been subjected to tensile and bending investigations by many researchers. However, the joint is also likely to experience buckling loading in some aerospace applications. The aim of thi... Adhesive Single Lap Joints have been subjected to tensile and bending investigations by many researchers. However, the joint is also likely to experience buckling loading in some aerospace applications. The aim of this work is to investigate the joint behaviour under quasi-static buckling conditions. For this purpose, the joints with three different adherend thicknesses and 25 mm overlap length were tested using two different types of adherends and an adhesive film. They were modelled using a non-linear Finite Element Method via the ABAQUS Explicit package programme.Load to failure and stress distributions in the joints were predicted and compared with the experimental results, which were found in a good agreement. The adhesive layer in the joint was assumed to experience shear stresses under the buckling mode, similar to that in tensile loading, yet, the stress concentrations at the ends of the overlap, the main cause of the failure, resulted in different effects on the joint performance;for the buckling mode the critical stresses were in compression but for the tensile case in peeling. Unlike the latter, the former was found to prevent failure of the layer depending on the adherend thickness, causing different failure mechanisms. There were two different failure modes of the joints;a complete failure in the adhesive layer and large plastic deformation of adherends which could be a good source for crashworthiness situations. Mechanical properties of the adherends were found to play important roles on the joint performance. 展开更多
关键词 Adhesive joins Buckling mode Energy absorption Finite element method single lap joint
原文传递
Physics-informed neural networks for estimating stress transfer mechanics in single lap joints 被引量:1
4
作者 Shivam SHARMA Rajneesh AWASTHI +1 位作者 Yedlabala Sudhir SASTRY Pattabhi Ramaiah BUDARAPU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第8期621-631,共11页
With the explosive growth of computational resources and data generation,deep machine learning has been successfully employed in various applications.One important and emerging scientific application of deep learning ... With the explosive growth of computational resources and data generation,deep machine learning has been successfully employed in various applications.One important and emerging scientific application of deep learning involves solving differential equations.Here,physics-informed neural networks(PINNs)are developed to solve the differential equations associated with a specific scientific problem.As such,algorithms for solving the differential equations by embedding their initial and boundary conditions in the cost function of the artificial neural networks using algorithmic differentiation must also be developed.In this study,various PINNs are adopted to estimate the stresses in the tablets and the interphase of a single lap joint.The proposed model is represented by two fourth-order non-homogeneous coupled partial differential equations,with the axial stresses in the upper and lower tablets adopted as the dependent variables.The axial stresses are a function of the tablet length,which presents the independent variable.Therefore,the axial stresses in the tablets are estimated by solving the coupled partial differential equations when subjected to the boundary conditions,whereas the remaining stress components are expressed in terms of axial stresses.The results obtained using the developed methodology are validated using the results obtained via MAPLE software. 展开更多
关键词 Physics-informed neural networks(PINNs) Algorithmic differentiation Artificial neural networks Loss function single lap joint
原文传递
Study on the mechanical behavior of adhesive interface by digital image correlation 被引量:3
5
作者 GUO BaoQiao XIE HuiMin +3 位作者 ZHU JianGuo WANG HuaiXi CHEN PengWan ZHANG QingMing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第4期574-580,共7页
The shear modulus of the adhesive layer and the failure mode of adhesive structure on single lap joint specimens under tensile tests are investigated in this paper.The aluminum-aluminum adherends are bonded by two dif... The shear modulus of the adhesive layer and the failure mode of adhesive structure on single lap joint specimens under tensile tests are investigated in this paper.The aluminum-aluminum adherends are bonded by two different adhesives:polydimethylsiloxane (PDMS) and epoxy.The full deformation fields are measured using the digital image correlation (DIC) method with the images on the middle part of the adhesive layer recorded by a high resolution microscope.Then,the shear modulus values of the two adhesives are calculated with a simple pure shear strain model.A numerical model is proposed to simulate the single lap joint structure under tensile load in comparison with the experimental results.The results show that this method can successfully estimate the shear modulus of the adhesive layer.The failure behavior of epoxy adhesive/adherend interface is also analyzed and discussed. 展开更多
关键词 single lap joint shear modulus adhesive interface FAILURE digital image correlation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部