We study the coutrol of gate voltage over the magnetization of a single-molecule magnet (SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two el...We study the coutrol of gate voltage over the magnetization of a single-molecule magnet (SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two electrodes. It is demonstrated that the SMM's magnetization can change periodically with periodic gate voltage due to the driving oI the temperature gradient. Under an appropriate matching of the electrode polarization, the temperature difference and the pulse width of gate voltage, the SMM's magnetization can be completely reversed in a period of gate voltage. The corresponding flipping time can be controlled by the system parameters. In addition, we also investigate the tunneling anisotropic magnetoresistance (TAMFt) of the device in the steady state when the ferromagnetic electrode is noncollinear with the easy axis of the SMM, and show the jump characteristic of the TAMR.展开更多
Owing to the bistable character of the single molecular magnet (SMM), it can generate 100% spin-polarized currents even connected with normal (N) leads. In this work, we study the phonon-assisted spin current in N...Owing to the bistable character of the single molecular magnet (SMM), it can generate 100% spin-polarized currents even connected with normal (N) leads. In this work, we study the phonon-assisted spin current in N- SMM-N systems. We mainly focus on the interplay of SMM's bistable character and electron-phonon coupling. It is found that when SMM is trapped in one of the lowest bistable states, it can generate phonon-assisted spin- polarized currents. At the up-spin transport channel, it is accompanied by a phonon-assisted up-spin current, while at the down-spin transport channel, it is accompanied by a phonon-assisted down-spin current.展开更多
This paper numerically investigates the magnetoelastic instability in the S = 1/2 {XXZ} rings containing finite spins N with antiferromagnetic nearest-neighbour ({NN}) and next-nearest neighbour ({NNN}) coupling. ...This paper numerically investigates the magnetoelastic instability in the S = 1/2 {XXZ} rings containing finite spins N with antiferromagnetic nearest-neighbour ({NN}) and next-nearest neighbour ({NNN}) coupling. It finds that, as the {NN} anisotropy Δ1 equals the {NNN} anisotropy /varDelta2, there exists a critical {NNN} coupling strength J2c(≈0.5), at which the systems always locate in dimerized phase for arbitrary large spring constant. As Δ1 /ne Δ2, the values of J2^{/rm c} are dependent on N and the difference of (Δ1-/varDelta2).展开更多
We use non-equilibrium Green's function method to analyze the shot noise spectrum of artificial single molecular magnets(ASMM) model in the strong spin–orbit coupling limit in sequential tunneling regime, mainly f...We use non-equilibrium Green's function method to analyze the shot noise spectrum of artificial single molecular magnets(ASMM) model in the strong spin–orbit coupling limit in sequential tunneling regime, mainly focusing on the effects of local large spin. In the linear response regime, the shot noise shows 2S + 1 peaks and is strongly spin-dependent.In the nonlinear response regime, one can observe 2S + 1 steps in shot noise and Fano factor. In these steps one can see the significant enhancement effect due to the spin-dependent multi-channel process of local large spin, which reduces electron correlations.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11274208
文摘We study the coutrol of gate voltage over the magnetization of a single-molecule magnet (SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two electrodes. It is demonstrated that the SMM's magnetization can change periodically with periodic gate voltage due to the driving oI the temperature gradient. Under an appropriate matching of the electrode polarization, the temperature difference and the pulse width of gate voltage, the SMM's magnetization can be completely reversed in a period of gate voltage. The corresponding flipping time can be controlled by the system parameters. In addition, we also investigate the tunneling anisotropic magnetoresistance (TAMFt) of the device in the steady state when the ferromagnetic electrode is noncollinear with the easy axis of the SMM, and show the jump characteristic of the TAMR.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11504210,11504211,11504212,11274207,11274208,11174115 and 11325417the Key Program of the Ministry of Education of China under Grant No 212018+2 种基金Shanxi Provincial Scientific and Technological Project(2015031002-2)Shanxi Provincial Natural Science Foundation under Grant Nos2013011007-2 and 2013021010-5Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province
文摘Owing to the bistable character of the single molecular magnet (SMM), it can generate 100% spin-polarized currents even connected with normal (N) leads. In this work, we study the phonon-assisted spin current in N- SMM-N systems. We mainly focus on the interplay of SMM's bistable character and electron-phonon coupling. It is found that when SMM is trapped in one of the lowest bistable states, it can generate phonon-assisted spin- polarized currents. At the up-spin transport channel, it is accompanied by a phonon-assisted up-spin current, while at the down-spin transport channel, it is accompanied by a phonon-assisted down-spin current.
文摘This paper numerically investigates the magnetoelastic instability in the S = 1/2 {XXZ} rings containing finite spins N with antiferromagnetic nearest-neighbour ({NN}) and next-nearest neighbour ({NNN}) coupling. It finds that, as the {NN} anisotropy Δ1 equals the {NNN} anisotropy /varDelta2, there exists a critical {NNN} coupling strength J2c(≈0.5), at which the systems always locate in dimerized phase for arbitrary large spring constant. As Δ1 /ne Δ2, the values of J2^{/rm c} are dependent on N and the difference of (Δ1-/varDelta2).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1150421011504211+11 种基金11504212112742071127420811174115and11325417)the Key Program of the Ministry of Education of China(Grant No.212018)the Scientific and Technological Project of Shanxi ProvinceChina(Grant No.2015031002-2)the Natural Science Foundation of Shanxi ProvinceChina(Grant Nos.2013011007-2 and 2013021010-5) the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi ProvinceChina
文摘We use non-equilibrium Green's function method to analyze the shot noise spectrum of artificial single molecular magnets(ASMM) model in the strong spin–orbit coupling limit in sequential tunneling regime, mainly focusing on the effects of local large spin. In the linear response regime, the shot noise shows 2S + 1 peaks and is strongly spin-dependent.In the nonlinear response regime, one can observe 2S + 1 steps in shot noise and Fano factor. In these steps one can see the significant enhancement effect due to the spin-dependent multi-channel process of local large spin, which reduces electron correlations.