期刊文献+
共找到140篇文章
< 1 2 7 >
每页显示 20 50 100
MARIE:One-Stage Object Detection Mechanism for Real-Time Identifying of Firearms
1
作者 Diana Abi-Nader Hassan Harb +4 位作者 Ali Jaber Ali Mansour Christophe Osswald Nour Mostafa Chamseddine Zaki 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期279-298,共20页
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable... Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively. 展开更多
关键词 Firearm and gun detection single shot multi-box detector deep learning one-stage detector MobileNet INCEPTION convolutional neural network
下载PDF
Pedestrian Detection Method Based on SSD Model
2
作者 Xin Li Xiangao Luo Haijiang Hao 《国际计算机前沿大会会议论文集》 2019年第1期605-607,共3页
Pedestrian detection has a wide range of applications in daily life, and many fields require pedestrians to conduct detection with high precision and speed, which is an urgent problem to be solved. The traditional ped... Pedestrian detection has a wide range of applications in daily life, and many fields require pedestrians to conduct detection with high precision and speed, which is an urgent problem to be solved. The traditional pedestrian detection method improves the detection performance by improving the classification algorithm and extracting more effective features. In this paper, a pedestrian detection method is proposed based on single shot multibox detector (SSD) model, which replaces the basic network part of SSD model with inception network structure with smaller parameters, faster running speed and stronger nonlinear expression ability. A high-performance network model for pedestrian detection was based on improved SSD. The experimental results show that the proposed method is faster than the original model, and the average precision of pedestrian recognition and location is 89.6%, which is 2.6% higher than the original model. 展开更多
关键词 PEDESTRIAN detection single shot multibox DETECTOR model INCEPTION NETWORK
下载PDF
基于分步多尺度特征融合的SSD目标检测算法
3
作者 蒋帅 薛波 《计算机与数字工程》 2024年第10期2972-2976,共5页
为解决SSD(single shot multibox detector)目标检测算法由于浅层特征表征能力不强,导致对小目标检测精度较低的问题,提出了一种基于分步多尺度特征融合的SSD目标检测算法。为增加SSD模型浅层特征包含的细节信息和语义信息,在模型的低... 为解决SSD(single shot multibox detector)目标检测算法由于浅层特征表征能力不强,导致对小目标检测精度较低的问题,提出了一种基于分步多尺度特征融合的SSD目标检测算法。为增加SSD模型浅层特征包含的细节信息和语义信息,在模型的低层特征部分引入了两个特征层;只对模型低层的两个特征图进行反卷积操作,并且分两步将低层三个不同尺度的特征图进行特征融合,不仅提高了模型浅层特征的表征能力,而且减少了算法运行过程中的计算量。实验结果表明,在PASCAL VOC2007数据集上,改进后的算法小目标类别的AP值得到了大幅度提高,mAP值比SSD算法提高了3.6%,算法的检测速度也满足实时性要求。 展开更多
关键词 目标检测 ssd 反卷积 分步多尺度特征融合
下载PDF
基于SSD算法的人脸检测算法研究
4
作者 郑文秀 赵兴娜 《现代信息科技》 2024年第19期17-22,共6页
针对传统SSD算法中对小目标检测效果不好的问题,提出一种基于ResNet的人脸检测算法。将SSD算法的基础网络VGG改进为ResNet网络,并通过残差网络,采用特征融合的方式将不同深度的特征信息进行融合,从而提高算法对小尺度人脸的检测性能。同... 针对传统SSD算法中对小目标检测效果不好的问题,提出一种基于ResNet的人脸检测算法。将SSD算法的基础网络VGG改进为ResNet网络,并通过残差网络,采用特征融合的方式将不同深度的特征信息进行融合,从而提高算法对小尺度人脸的检测性能。同时,针对SSD算法对重叠框出现漏检的问题,将非极大值抑制算法(NMS)改进为Soft-NMS。此外,通过设置一个衰减函数,来降低相邻检测框的置信度,解决传统NMS算法对分数较低的检测框过滤掉的问题,能够降低算法的漏检率,提升算法的检测精度。 展开更多
关键词 人脸检测 ssd算法 ResNet Soft-NMS
下载PDF
基于特征融合的SSD视觉小目标检测 被引量:12
5
作者 王冬丽 廖春江 +1 位作者 牟金震 周彦 《计算机工程与应用》 CSCD 北大核心 2020年第16期31-36,共6页
针对SSD算法在检测目标过程中对小目标检测效果差的缺陷,提出了特征融合的SSD方法。该方法充分融合深浅层特征信息以提升网络模型对小目标的检测能力,为更好地检测小目标,将先验框尺寸相对原图比列进行调整,同时对SSD模型相应超参数值... 针对SSD算法在检测目标过程中对小目标检测效果差的缺陷,提出了特征融合的SSD方法。该方法充分融合深浅层特征信息以提升网络模型对小目标的检测能力,为更好地检测小目标,将先验框尺寸相对原图比列进行调整,同时对SSD模型相应超参数值进行调整。实验结果表明,检测精度mAP较SSD提高3.4个百分点,对小目标Bottle、Chair、Plant检测精度分别提升8.7个百分点、3.4个百分点和7.1个百分点。检测精度mAP较当前一系列性能优异的目标检测算法有显著提高。通过拓展实验进一步证明改进算法成功检测到了大多数SSD算法没有检测到的小目标,提高了平均检测准确率。 展开更多
关键词 小目标检测 特征融合 ssd(single shot Multibox Detector) 特征增强 PASCAL VOC2007
下载PDF
基于改进SSD的电力设备红外图像异常自动检测方法 被引量:65
6
作者 王旭红 李浩 +1 位作者 樊绍胜 蒋志鹏 《电工技术学报》 EI CSCD 北大核心 2020年第S01期302-305,306-310,共9页
为实现各类巡检机器人、无人机等智能电力巡检设备所携红外热像仪采集的红外图像自动检测,该文提出基于改进SSD的电力设备红外图像异常自动检测方法。对收集的典型故障电力设备红外图像统一预处理;标注电力设备及异常区域并制作标准数据... 为实现各类巡检机器人、无人机等智能电力巡检设备所携红外热像仪采集的红外图像自动检测,该文提出基于改进SSD的电力设备红外图像异常自动检测方法。对收集的典型故障电力设备红外图像统一预处理;标注电力设备及异常区域并制作标准数据集;搭建检测网络;读入数据与预训练模型到搭建的网络进行微调训练验证,得到最终模型文件并测试。实验表明,该方法泛化性强,准确率较高,能达到实时自动检测红外图像下多类典型电力设备并定位异常发热区域的效果,将使现有电力巡检设备实现“智能+”。 展开更多
关键词 电力设备异常检测 红外图像 ssd 智能巡检
下载PDF
基于SSD网络模型的多目标检测算法 被引量:15
7
作者 蔡汉明 赵振兴 +1 位作者 韩露 曾祥永 《机电工程》 CAS 2017年第6期685-688,共4页
针对现代化工厂中视觉机器人或智能终端处理多目标检测算法的计算任务繁重、运算速度较慢等问题,将网络通信技术应用到算法处理中进行了在线检测。对TCP/IP协议进行了研究,建立了智能终端和云端之间的关系,提出了将智能终端采集到的图... 针对现代化工厂中视觉机器人或智能终端处理多目标检测算法的计算任务繁重、运算速度较慢等问题,将网络通信技术应用到算法处理中进行了在线检测。对TCP/IP协议进行了研究,建立了智能终端和云端之间的关系,提出了将智能终端采集到的图像数据进行预处理然后使用基于TCP的Socket多线程通信方式将图像数据送入云端,在云端的多台计算机上同时使用SSD网络模型的多目标检测算法进行了并行处理,并将结果传回智能终端。利用计算机单机与智能终端在线检测在处理时间上进行了对比试验。试验结果表明:在线检测速度稍慢,但已满足实际需求;智能终端在线检测降低了对智能机器人终端硬件的要求,回收的数据可以再利用,并且可以实现算法动态升级。 展开更多
关键词 目标检测 卷积神经网络 ssd 智能机器人 SOCKET网络通信
下载PDF
用于交通标志检测的窗口大小聚类残差SSD模型 被引量:4
8
作者 宋青松 王兴莉 +3 位作者 张超 陈禹 宋焕生 KHATTAK Asad Jan 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第10期133-140,共8页
SSD通常被认为适合于求解小目标图像检测问题,但在特征表征和检测效率两方面还存在改进空间.提出一种聚类残差SSD模型,一方面将原始SSD模型中的VGG16基础网络替换为更深的ResNet50残差网络,以改善特征表征能力.另一方面采用K-均值聚类... SSD通常被认为适合于求解小目标图像检测问题,但在特征表征和检测效率两方面还存在改进空间.提出一种聚类残差SSD模型,一方面将原始SSD模型中的VGG16基础网络替换为更深的ResNet50残差网络,以改善特征表征能力.另一方面采用K-均值聚类算法取代盲目搜索机制,确定SSD中默认窗口的大小,以改善检测效率.针对德国交通标志检测数据集,模型获得了97.1%mAP和每幅图像0.07 s的检测速度.针对中国交通标志数据集,模型获得89.7%mAP和每幅图像0.08 s的检测速度.与原始SSD模型比较,本文所提模型的检测性能得到改善. 展开更多
关键词 交通标志检测 深度学习 单拍多盒探测器(ssd) K-均值 聚类
下载PDF
嵌入遮挡关系模块的SSD模型的输电线路图像金具检测 被引量:9
9
作者 赵振兵 江爱雪 +2 位作者 戚银城 张薇 赵文清 《智能系统学报》 CSCD 北大核心 2020年第4期656-662,共7页
为了提升深度学习目标检测模型在输电线路金具自动化检测任务中的准确率,针对金具检测数据集中金具目标标注框之间不可避免地广泛存在相交而导致金具目标检测定位不准确的问题,本文利用相交区域的相似性作为金具目标的上下文信息,提出... 为了提升深度学习目标检测模型在输电线路金具自动化检测任务中的准确率,针对金具检测数据集中金具目标标注框之间不可避免地广泛存在相交而导致金具目标检测定位不准确的问题,本文利用相交区域的相似性作为金具目标的上下文信息,提出目标间遮挡关系的描述方法,用于规则性描述图像中金具目标间的相互遮挡,设计遮挡关系模块,并将其嵌入到单次多框检测器(single shot multibox detector,SSD)模型中。为了验证嵌入遮挡关系模块的SSD模型的有效性,选择了8类目标标注框普遍存在相交的小目标金具进行实验,实验使用的金具检测数据集的训练集和测试集中金具目标数分别为6271和1713。实验证明,原始SSD模型的平均精度均值(mean average precision,mAP)为72.10%,嵌入遮挡关系模块的SSD模型的m AP为76.56%,性能提升了4.46%。 展开更多
关键词 输电线路金具 遮挡度 遮挡关系描述 遮挡关系模块 ssd 标注框 目标检测 深度学习
下载PDF
结合乐高滤波器和SSD的低光照图像融合检测方法 被引量:2
10
作者 李琳 刘学亮 +1 位作者 赵烨 纪平 《计算机科学》 CSCD 北大核心 2021年第7期213-218,共6页
针对低光照图像背景环境复杂导致目标检测易产生误检、漏检现象,提出了一种基于SSD目标检测的改进低光照图像精度和速度的方法。该方法先对低光照图像进行增强处理,然后将处理后的低光照图像和增强图像分别输入到融入乐高滤波器的SSD网... 针对低光照图像背景环境复杂导致目标检测易产生误检、漏检现象,提出了一种基于SSD目标检测的改进低光照图像精度和速度的方法。该方法先对低光照图像进行增强处理,然后将处理后的低光照图像和增强图像分别输入到融入乐高滤波器的SSD网络结构中进行训练检测,通过得到的两种检测模型对处理后的数据集进行检测,最后融合检测结果候选框中的不重复框,筛选候选框中的重复框,标记出正确位置的目标,从而提升对低光照图像检测的精度。在网络结构不同位置融入乐高滤波器,模型参数量分别减少8.9%和29.5%,浮点运算次数下降6.8%和34.9%,检测框融合处理后检测精度得到了3%~7%的提升。该方法更符合实际应用,有效提升了低光照图像的检测速度和精度,扩大了目标检测的应用范围。 展开更多
关键词 目标检测 低光照图像 ssd算法 乐高滤波器 融合
下载PDF
基于MobileNetV2和IFPN改进的SSD垃圾实时分类检测方法 被引量:10
11
作者 赵珊 刘子路 +1 位作者 郑爱玲 高雨 《计算机应用》 CSCD 北大核心 2022年第S01期106-111,共6页
针对垃圾分类检测任务中检测目标尺寸不一和小目标检测精度不高等问题,构建一种基于隐式特征金字塔网络(IFPN)和MobileNetV2的改进SSD模型的分类检测方法,对垃圾进行实时分类检测。首先,将改进后的MobileNetV2引入SSD,加入带有空洞卷积... 针对垃圾分类检测任务中检测目标尺寸不一和小目标检测精度不高等问题,构建一种基于隐式特征金字塔网络(IFPN)和MobileNetV2的改进SSD模型的分类检测方法,对垃圾进行实时分类检测。首先,将改进后的MobileNetV2引入SSD,加入带有空洞卷积的空间金字塔池化模块(ASPP),在降低网络模型计算复杂度的同时保证网络实时性和精确性;其次,采用IFPN从网络的深层到浅层逐级融合SSD,更精确地检测出小目标;最后,使用Focal Loss函数调节正负样本之间的权重。实验结果表明,在阈值为0.4时,所提方法比传统SSD平均精确率均值(mAP)提高了4.84个百分点,检测耗时减少了72.7%,能满足边缘计算设备对模型的各项要求。 展开更多
关键词 垃圾分类 目标检测 MobileNetV2 ssd 空间金字塔池化 隐式特征金字塔网络
下载PDF
基于改进SSD的苹果叶部病理检测识别 被引量:5
12
作者 李辉 严康华 +2 位作者 景浩 侯锐 梁晓菡 《传感器与微系统》 CSCD 北大核心 2022年第10期134-137,共4页
针对目前主流的目标检测算法在苹果叶部病理的检测中识别速度和精度较低的问题,实现了基于改进SSD的苹果叶部病理的检测识别。首先,采用轻量级特征融合结构,融合高低层特征图特征;其次,引入通道注意力机制,提取更有效的病斑小目标特征信... 针对目前主流的目标检测算法在苹果叶部病理的检测中识别速度和精度较低的问题,实现了基于改进SSD的苹果叶部病理的检测识别。首先,采用轻量级特征融合结构,融合高低层特征图特征;其次,引入通道注意力机制,提取更有效的病斑小目标特征信息,同时使用Focal Loss损失函数代替原有的Multibox Loss损失函数,减少了训练中大量简单负样本的权值;最后,利用苹果叶部病理公共数据集进行对比实验,选取训练最优的网络。实验表明:改进的SSD比其它算法的检测效果有明显的提升。 展开更多
关键词 苹果叶部病理检测 ssd算法 特征融合 通道注意力机制
下载PDF
基于SSD网络的电梯内电动自行车检测研究 被引量:1
13
作者 黄鹏 房志明 +3 位作者 朱曼 黄中意 叶锐 刘泳琪 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第2期167-172,共6页
为减少因电动自行车违规操作而造成的消防安全事故,杜绝电动自行车进电梯的违规行为,基于深度学习SSD目标检测网络,使用VGG16、EfficientNet、MobileNet 3种主干网络,研究SSD网络对电梯内电动自行车检测的可行性,分析比较3种网络的检测... 为减少因电动自行车违规操作而造成的消防安全事故,杜绝电动自行车进电梯的违规行为,基于深度学习SSD目标检测网络,使用VGG16、EfficientNet、MobileNet 3种主干网络,研究SSD网络对电梯内电动自行车检测的可行性,分析比较3种网络的检测效果,并提出基于双摄的检测方法,进一步提高电梯场景下检测准确度,减少误检误报警。研究结果表明:SSD检测网络对电梯内电动自行车检测效果良好,其中SSD_MobileNet网络更适用于工业领域,双摄检测方法的检测准确率均大于90%。 展开更多
关键词 消防安全 深度学习 电动自行车进电梯 双摄检测 ssd 主干网络
下载PDF
一种改进的SSD红外舰船目标检测算法 被引量:1
14
作者 王岩 娄树理 《烟台大学学报(自然科学与工程版)》 CAS 2023年第4期487-493,共7页
针对海战场舰船目标检测精度和速度要求高的技术难题,提出一种改进的SSD红外舰船目标检测算法,通过改进ResNet-50网络以提高整体网络性能;引入Mosaic数据增强方法对图像进行数据增强,提高检测效率和丰富检测物体的背景;引入ECANet通道... 针对海战场舰船目标检测精度和速度要求高的技术难题,提出一种改进的SSD红外舰船目标检测算法,通过改进ResNet-50网络以提高整体网络性能;引入Mosaic数据增强方法对图像进行数据增强,提高检测效率和丰富检测物体的背景;引入ECANet通道注意力机制,提高对舰船目标的识别能力,降低舰船目标的漏检率和误检率;使用余弦退火衰减学习率来优化网络。实验结果表明,在保证检测速度的基础上,改进后算法的检测精度均值达到98.8%,对红外舰船目标有着很好的检测效果。 展开更多
关键词 ssd算法 ResNet-50网络 数据增强 红外舰船
下载PDF
基于注意力与特征融合的改进SSD目标检测算法 被引量:1
15
作者 王海勇 王志青 《软件》 2023年第4期1-5,共5页
针对目标检测中检测精度低且小目标检测较难的问题,提出了一种基于注意力机制与特征融合的改进SSD目标检测算法。在标准SSD目标检测模型基础上,使用深层特征提取网络ResNet50作为主干网络,在特征提取网络中引入通道-空间注意力机制增强... 针对目标检测中检测精度低且小目标检测较难的问题,提出了一种基于注意力机制与特征融合的改进SSD目标检测算法。在标准SSD目标检测模型基础上,使用深层特征提取网络ResNet50作为主干网络,在特征提取网络中引入通道-空间注意力机制增强特征图语义信息,计算特征图中像素点之间的影响。最后,将低层特征与高层语义信息进行Concat特征融合,充分利用不同特征图之间的关联信息。此外,使用GIOU代替传统IOU来计算框间的交并比,同时考虑正负样本不均衡的情况,选择Focal损失函数,重新定义了损失函数。实验采用PASCAL VOC开源数据集进行仿真验证,并与传统SSD目标检测算法进行对比,准确率得到了一定的提高,验证了该算法对目标检测的有效性。 展开更多
关键词 目标检测 单阶多层检测器 注意力机制 特征融合
下载PDF
基于改进SSD的航拍城市道路车辆检测方法 被引量:20
16
作者 宋世奇 李旭 +3 位作者 祝雪芬 杨峰 武文翀 吴琳琦 《传感器与微系统》 CSCD 北大核心 2021年第1期114-117,共4页
为提升无人机(UAV)航拍视角下城市道路车辆检测性能,基于SSD深度学习网络框架,改进并搭建了一种航拍城市道路车辆检测网络。一方面充分挖掘无人机航拍视角下车辆多为小目标的先验知识,利用K-means++聚类算法获取适应航拍车辆目标的默认... 为提升无人机(UAV)航拍视角下城市道路车辆检测性能,基于SSD深度学习网络框架,改进并搭建了一种航拍城市道路车辆检测网络。一方面充分挖掘无人机航拍视角下车辆多为小目标的先验知识,利用K-means++聚类算法获取适应航拍车辆目标的默认候选框参数信息;另一方面,为保证小尺度目标特征的有效传递和准确提取,对基准SSD网络结构进行改进,在其特征提取网络骨架中加入了具有抗混叠效应的可学习低通滤波层,并保留用于小尺度车辆目标检测回归的大尺寸特征图。实验表明:在满足实时性的情况下,所提方法与基准SSD网络相比,检测精度提升了4.3个百分点,能够明显改善小尺度车辆目标检测效果,提高了无人机航拍视角下城市道路车辆目标整体检测精度。 展开更多
关键词 智能交通 航拍图像 ssd 车辆检测
下载PDF
特征增强的SSD算法及其在目标检测中的应用 被引量:35
17
作者 谭红臣 李淑华 +1 位作者 刘彬 刘秀平 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第4期573-579,共7页
针对多尺度单发射击检测(SSD)算法不同尺度的特征层很难进行融合互补问题,提出一种特征增强的SSD(FE-SSD)算法.首先对SSD算法的金字塔特征层中,每一尺度的特征进行尺寸不变的卷积操作;然后将卷积前与卷积后的特征进行特征融合操作,进而... 针对多尺度单发射击检测(SSD)算法不同尺度的特征层很难进行融合互补问题,提出一种特征增强的SSD(FE-SSD)算法.首先对SSD算法的金字塔特征层中,每一尺度的特征进行尺寸不变的卷积操作;然后将卷积前与卷积后的特征进行特征融合操作,进而产生一组新的金字塔特征层;最后在新产生的金字塔特征层上执行目标的检测与定位任务.在PASCALVOC2007公共数据库上进行实验,当输入图像尺寸为300×300时,检测精度(mAP)达到78.0%,检测速度(FPS)达到82.5帧/s.此外,在拓展实验中,文中算法对图像中模糊目标的检测效果也优于SSD算法. 展开更多
关键词 ssd算法 目标检测 特征融合 网络结构
下载PDF
基于SSD的粮仓害虫检测研究 被引量:14
18
作者 邓壮来 汪盼 +3 位作者 宋雪桦 王昌达 陈娟 吴立亚 《计算机工程与应用》 CSCD 北大核心 2020年第11期214-218,共5页
为了对粮仓害虫进行有效地检测,减少粮食损失,提出一种基于SSD的粮仓害虫检测方法。该方法利用多个尺度的卷积特征图来检测害虫。通过轻量化模型结构和优化损失函数来提高SSD的训练速度和检测效率。实验将6类高爆发的粮仓害虫图像进行... 为了对粮仓害虫进行有效地检测,减少粮食损失,提出一种基于SSD的粮仓害虫检测方法。该方法利用多个尺度的卷积特征图来检测害虫。通过轻量化模型结构和优化损失函数来提高SSD的训练速度和检测效率。实验将6类高爆发的粮仓害虫图像进行训练和测试,结果表明:该方法相比较于当前主流的目标检测方法在对粮仓害虫检测中具有更高的mAP。 展开更多
关键词 粮仓害虫 粮食损失 目标检测 ssd MAP
下载PDF
基于改进SSD的水下光学图像感兴趣目标检测算法研究 被引量:11
19
作者 李宝奇 黄海宁 +2 位作者 刘纪元 刘正君 韦琳哲 《电子与信息学报》 EI CSCD 北大核心 2022年第10期3372-3378,共7页
针对轻量化目标模型SSD-MV2对水下光学图像感兴趣目标检测精度低的问题,该文提出一种通道可选择的轻量化特征提取模块(SEB)和一种卷积核可变形、通道可选择的特征提取模块(SDB)。与此同时,利用SEB模块和SDB模块分别重新设计了SSD-MV2的... 针对轻量化目标模型SSD-MV2对水下光学图像感兴趣目标检测精度低的问题,该文提出一种通道可选择的轻量化特征提取模块(SEB)和一种卷积核可变形、通道可选择的特征提取模块(SDB)。与此同时,利用SEB模块和SDB模块分别重新设计了SSD-MV2的基础网络和附加特征提取网络,记作SSD-MV2SDB,并为其选择了合理的基础网络扩张系数和附加特征提取网络SDB模块数量。在水下图像感兴趣目标检测数据集UOI-DET上,SSD-MV2SDB比SSD-MV2检测精度提高3.04%。实验结果表明,SSD-MV2SDB适用于水下图像感兴趣目标检测任务。 展开更多
关键词 水下光学图像感兴趣目标检测 ssd MobileNet V2 可变形卷积 通道可选择
下载PDF
基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型 被引量:14
20
作者 李宝奇 黄海宁 +2 位作者 刘纪元 刘正君 韦琳哲 《电子与信息学报》 EI CSCD 北大核心 2021年第10期2854-2862,共9页
针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的... 针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的基础网络和附加特征提取网络,记作SSD-MV2ESK,并为其选择了合理的扩张系数和多尺度系数。在合成孔径声呐图像水下多尺度目标检测数据集SST-DET上,SSD-MV2ESK在模型参数基本相等的条件下,检测精度比SSD-MV2提升4.71%。实验结果表明,SSD-MV2ESK适用于合成孔径声呐图像水下多尺度目标检测任务。 展开更多
关键词 合成孔径声呐 图像水下多尺度目标检测 ssd MobileNet V2 多通道可选择 深度可分离空洞卷积
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部