期刊文献+
共找到1,234篇文章
< 1 2 62 >
每页显示 20 50 100
Antiphase Boundary Strengthening in a Single Crystal Nickel-base Superalloy
1
作者 JinghuaZHANG XinWU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第2期159-162,共4页
An investigation has been made into strengthening mechanism in a single crystal nickel-base superalloy DD8 by transmission electron microscopy. The results show that the stress rupture strength of the alloy increases ... An investigation has been made into strengthening mechanism in a single crystal nickel-base superalloy DD8 by transmission electron microscopy. The results show that the stress rupture strength of the alloy increases with decreasing misfit, and the antiphase boundaries (APBs) formed in the ordered γ' phase, rather than the misfits, play a dominate role in strengthening of the single crystal Ni-base superalloy DD8.There are three kinds of mechanisms for forming the APBs which were observed in the present materials. One is mis-arrangement of the local ordered atoms in the γ' precipitates due to the local strain; the second arises from the 1/2<110> dislocations cutting into the γ', and the third is the formation of the APBs induced by the 1/2<110> matrix dislocation network. The contribution of the antiphase boundary energy to the strength of the alloy can be expressed by:where τ is the resistance to deformation provided by the APB energy; S is the long-range order degree in γ'; Tc is the transition temperature from order to disorder; f is the volume fraction of γ'; rs is the radius of γ'; b is the Burgers vector; a is the lattice constant; G is the shear modulus, and k is the proportional constant. 展开更多
关键词 single crystal nickel-base superalloy γ' phase Strengthening
下载PDF
Surface recrystallization of a single crystal nickel-base superalloy 被引量:8
2
作者 Jie Meng Tao Jin +1 位作者 Xiao-feng Sun Zhuang-qi Hu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第2期197-202,共6页
The recrystallization behavior of a single crystal nickel-base superalloy was investigated by shot peening and subsequent annealing. Two kinds of recrystallization microstructures, which are intensively dependent on t... The recrystallization behavior of a single crystal nickel-base superalloy was investigated by shot peening and subsequent annealing. Two kinds of recrystallization microstructures, which are intensively dependent on the annealing temperature, are shown in the nickel-base superalloy after shot peening and subsequent annealing. Surface recrystallized grains are obtained when the superalloy is annealed at solution treatment temperature. The nucleation of recrystallization originates from the dendritic core, where rapid dissolution of γ' particles occurs. Cellular recrystallization is observed after annealing at lower temperatures. Cellular structures induced by high diffusivity of the moving boundary and more γ' particles dissolution led by residual stress are developed from the surface region. Recrystallized kinetics of the shot-peened alloy annealed at 1050°C accords with the Johnson-Mehl-Avrami-Kolmogorov equation. The low Avrami exponent is caused by the inhomogeneous distribution of stored energy, the decreasing of stored energy during recovery, and the strong resistance of boundary migration by γ' particles. 展开更多
关键词 nick-base superalloy single crystals REcrystalLIZATION shot peening ANNEALING
下载PDF
Influence of Co, W and Ti on the Stress-rupture Lives of a Single Crystal Nickel-base Superalloy 被引量:1
3
作者 Dayun YANG Tao JIN Nairen ZHAO Zhihui WANG Xiaofeng SUN Hengrong GUAN Zhuangqi HU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第2期169-172,共4页
The influence of Co, W and Ti on stress-rupture lives of a Ni-Cr-AI-Mo-Ta-Co-W-Ti single crystal nickel-base superalloy has been investigated using a L9 (34) orthogonal array design (OAD) by statistical analysis. ... The influence of Co, W and Ti on stress-rupture lives of a Ni-Cr-AI-Mo-Ta-Co-W-Ti single crystal nickel-base superalloy has been investigated using a L9 (34) orthogonal array design (OAD) by statistical analysis. At a selected composition range, Ti content was the most important factor to the effect of the stress-rupture lives and then followed by Co content. W content had the minimum effect on stress-rupture lives. The optimal alloy should contain 10 wt pct Co, 8 wt pct W and zero Ti. The optimized alloy also had good microstructural stability during thermal exposure at 870℃ for 500 h. 展开更多
关键词 nickel-base single crystal superalloy Orthogonal array design STRESS-RUPTURE
下载PDF
Microstructure Evolution of a Single Crystal Nickel-Base Superalloy During Heat Treatment and Creep
4
作者 YANGDa-yun JINTao ZHAONai-ren WANGZhi-hui SUNXiao-feng GUANHeng-rong HUZhuang-qi 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期80-82,共3页
Microstructure evolution of a single crystal nickel-base superalloy during heat treatment and tensile creep at 1010°C and 248 MPa for 30h was observed and analyzed. Internal stresses because of lattice mismatch b... Microstructure evolution of a single crystal nickel-base superalloy during heat treatment and tensile creep at 1010°C and 248 MPa for 30h was observed and analyzed. Internal stresses because of lattice mismatch between and / phase provided the driving force for / shape evolution during heat treatment. More than 65 vol. % distorted cubic phase keeping coherency with the y matrix precipitated after solution at 1295°C for 32h. The shape of phase was perfectly cubic with increasing precipitate size during the two-step aging treatment. Due to the applied stress and internal stress field the continuous y1/ lamellar structure perpendicular to the applied stress was formed after 30h tensile creep. 展开更多
关键词 显微结构 热处理 拉伸蠕变 单晶镍超级合金
下载PDF
Temperature dependence of anisotropic stress-rupture properties of nickel-based single crystal superalloy SRR99 被引量:9
5
作者 韩国明 杨彦红 +1 位作者 于金江 孙晓峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1717-1721,共5页
In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture... In order to reveal the temperature dependence of anisotropic stress?rupture behavior of SRR99 single crystal superalloys under conditions of temperature ranging from 650 to 1 040 °C and typical stresses,fracture morphologies and microstructure evolution were investigated by SEM and TEM.From the Larson-Miller curves,it is found that single crystal with [001] orientation has the optimum stress rupture property in comparison with [011] and [111] orientations at lower and intermediate temperature.With increasing temperature to 1 040 °C,stress-rupture properties of single crystals with three principal orientations tend to be equivalent.Based on the fracture surface and microstructural observations,superior stress?rupture behavior of single crystal with [001] orientation was rationalized and the effect of misorientation of single crystal on stress rupture property was also discussed. 展开更多
关键词 single crystal superalloy stress-rupture property ANISOTROPY deformation mechanism
下载PDF
Surface recrystallization of single crystal nickel-based superalloy 被引量:8
6
作者 张兵 曹雪刚 +1 位作者 刘德林 刘新灵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1286-1292,共7页
As-cast single crystal (SC) superalloy samples were shot peened and then annealed at different temperatures to investigate the effect of annealing temperature on the surface recrystallization behavior of the SC supe... As-cast single crystal (SC) superalloy samples were shot peened and then annealed at different temperatures to investigate the effect of annealing temperature on the surface recrystallization behavior of the SC superalloy. The results show that the depth of recrystallized layers increases with the increase of annealing temperature. Below 1200 °C, the recrystallization depth climbs slowly with temperature rising. Above 1200 °C, the recrystallization depth increases sharply with the rise of temperature. The morphology of recrystallized grains is significantly affected by annealing temperature. Below the γ′ solvus, cellular recrystallization may be observed. Above the γ′ solvus, recrystallization occurs through the growth of well developed recrystallized grains. In addition, the microstructure evolution of recrystallized grains at the homogenization annealing temperature was studied. It is found that recrystallized grains first nucleate in the dendritic core areas on the shot-peened surface and then grow inwards along the dendritic core areas. With the dissolution of the coarse γ′ precipitates and γ/γ′ eutectics in the interdendritic areas, the recrystallized grain boundaries move through the interdendritic areas. Finally, the fully developed grains nearly have a uniform depth. The dissolution of primary γ′ precipitates is a critical factor influencing the recrystallization behavior of SC superalloys. 展开更多
关键词 single crystal superalloy REcrystalLIZATION shot peening heat treatment
下载PDF
Microstructure evolution and deformation features of single crystal nickel-based superalloy containing 4.2% Re during creep 被引量:1
7
作者 田素贵 梁福顺 +2 位作者 黎阿男 李晶晶 钱本江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1532-1537,共6页
By means of microstructure observation and measurement of creep properties,the high temperature creep behaviors of a single crystal nickel-based superalloy containing Re were investigated.Results show that the single ... By means of microstructure observation and measurement of creep properties,the high temperature creep behaviors of a single crystal nickel-based superalloy containing Re were investigated.Results show that the single crystal nickel-based superalloy containing 4.2% Re possesses a better creep resistance at high temperature.After being crept up to fracture,the various morphologies are displayed in the different areas of the sample,and the γ' phase is transformed into the rafted structure along the direction vertical to the applied stress axis in the regions far from the fracture.But the coarsening and twisting extents of the rafted γ' phase increase in the regions near the fracture,which is attributed to the occurrence of the larger plastic deformation.In the later stage of creep,the deformation mechanism of the alloy is that the dislocations with [01^-1]and [011] trace features shear into the rafted γ' phase.The main/secondary slipping dislocations are alternately activated to twist the rafted γ' phase up to the occurrence of creep fracture,which is thought to be the fracture mechanism of the alloy during creep. 展开更多
关键词 single crystal nickel-based superalloy RE CREEP microstructure evolution deformation mechanism
下载PDF
Effect of Ru on stress rupture properties of nickel-based single crystal superalloy at high temperature 被引量:5
8
作者 史振学 李嘉荣 +2 位作者 刘世忠 王效光 岳晓岱 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2106-2111,共6页
Two experimental single crystal superalloys, Ru-free alloy and Ru-containing alloy with [001] orientation, other alloying element contents being basically kept same, were cast in the directionally solidified furnace. ... Two experimental single crystal superalloys, Ru-free alloy and Ru-containing alloy with [001] orientation, other alloying element contents being basically kept same, were cast in the directionally solidified furnace. The effect of Ru on the stress rupture properties of the single crystal superalloy was investigated at (980 ℃, 250 MPa), (1100 ℃, 140 MPa) and (1120 ℃, 140 MPa). The results show that Ru can enhance high temperature stress rupture properties of single crystal superalloy. The improvement effect of Ru addition on stress rupture properties decreases with increasing test temperature. The γ′ coarsening and rafting directionally are observed in Ru-free alloy and Ru-containing alloy after stress rupture test. Needle shaped TCP phases precipitated in both of alloys after stress rupture test at (1100 ℃, 140 MPa) and (1120 ℃, 140 MPa) and no TCP phase was observed in both of alloys after stress rupture test (980 ℃, 250 MPa). The precipitate volume fraction of TCP phases is significantly decreased by the addition of Ru. At last, the relationship between the microstructure change with Ru addition and improvement of stress rupture properties was discussed. 展开更多
关键词 Ni-based single crystal superalloy RU stress rupture properties
下载PDF
Creep properties and microstructure evolution of nickel-based single crystal superalloy at different conditions 被引量:5
9
作者 史振学 李嘉荣 +1 位作者 刘世忠 王效光 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2536-2543,共8页
The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic... The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress. 展开更多
关键词 single crystal superalloy creep properties microstructure evolution γ′ phase TCP phase
下载PDF
Influence of Cr addition on microstructure of a 5% Re-containing single crystal nickel-based superalloy 被引量:2
10
作者 谭喜鹏 刘金来 +2 位作者 金涛 孙晓峰 胡壮麒 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1004-1008,共5页
Based on a 5% (mass fraction) Re-containing single crystal nickel-based superalloy with 3% (mass fraction) Cr, the microstructural variation with Cr addition was investigated. The experimental results show that se... Based on a 5% (mass fraction) Re-containing single crystal nickel-based superalloy with 3% (mass fraction) Cr, the microstructural variation with Cr addition was investigated. The experimental results show that segregation of alloying elements was enhanced in as-cast microstructure with Cr addition; and the volume fraction of eutectic is increased. However, the solidus and liquidus temperatures are remarkably reduced. With the increase of Cr content, the average γ' size and volume fraction are decreased in the fully heat treated microstructure. X-ray diffraction results indicate that γ/γ' lattice misfit becomes more negative. According to the energy dispersive spectroscopy (EDS) results, Cr is mainly distributed in the γ matrix; and more y-forming elements, such as Re and W, enter the γ matrix, while the γ/γ' partition ratio of Cr is inversely decreased. 展开更多
关键词 CR RE single crystal superalloy MISFIT MICROSTRUCTURE
下载PDF
Microstructual evolution and stability of second generation single crystal nickel-based superalloy DD5 被引量:18
11
作者 Ren-jie CUI Zhao-hui HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2079-2085,共7页
The microstructual evolution and stability of a second generation single crystal (SC) nickel-based superalloy DD5 with minor grain boundary (GB) strengthening elements (C, B and Hf) were studied as a function of as-ca... The microstructual evolution and stability of a second generation single crystal (SC) nickel-based superalloy DD5 with minor grain boundary (GB) strengthening elements (C, B and Hf) were studied as a function of as-cast, heat treatment and thermal exposure. The microstructure and composition of the alloy were investigated by optical microscopy, scanning electron microanalysis (SEM), electron probe microanalysis (EPMA), energy dispersive spectrometry (EDS) and extraction analysis. In the as-cast condition,the microstructure observations and composition analysis showed that γ phase was the primary solidification phase and there were three microsegregations in the metal matrix. The morphology of these microsegregations depended on element segregations. After heat treatment, the dendrite cores contained fine and cuboidal-shaped γ′ particles with an average edge length of about 0.5 μm, whileinterdendritic regions contained irregularly-shaped γ′ particles and MC/M23C6 carbides. The mass fraction of γ′ phases was 61.685%.After exposure at 980 °C for 1000 h, no TCP phase was observed in both dendritic and interdendritic regions, indicating a good microstructual stability of the DD5 alloy at 980 °C. 展开更多
关键词 single crystal superalloy DD5 alloy microstructural evolution heat treatment thermal exposure
下载PDF
Orientation dependence of transverse tensile properties of nickel-based third generation single crystal superalloy DD9 from 760 to 1100 ℃ 被引量:17
12
作者 Wan-peng YANG Jia-rong LI +3 位作者 Shi-zhong LIU Zhen-xue SHI Jin-qian ZHAO Xiao-guang WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第3期558-568,共11页
At temperatures ranging from 760 to 1100 °C, the tensile properties of a nickel-based third generation single crystal superalloy DD9 with [100],[120] and [110] orientations were studied. The microstructures and f... At temperatures ranging from 760 to 1100 °C, the tensile properties of a nickel-based third generation single crystal superalloy DD9 with [100],[120] and [110] orientations were studied. The microstructures and fracture surfaces were observed by OM, SEM and TEM. Results show that the tensile strength of [100] specimen is higher than that of [120] and [110] specimens at 760 and 850 °C;while at the temperatures higher than 980 °C, the tensile strength of all specimens has little difference. The fracture mechanisms of [100],[120] and [110] specimens are the same at 760 and 980 °C. At 1100 °C, the fracture surfaces of [100] and [120] specimens are characterized by dimple features;while [110] specimen shows mixed quasi-cleavage and dimple featured fracture surfaces. At 760 °C, obvious superlattice stacking faults (SSFs) are observed only in [100] specimen;while at 1100 °C, the dislocation configurations of all specimens are similar. The difference in the number of potential active slip systems in [100],[120] and [110] specimens during the tensile deformation process is the main reason for the transverse tensile anisotropy. 展开更多
关键词 third generation single crystal superalloy DD9 transverse tensile properties ANISOTROPY fracture surface
下载PDF
Creep feed grinding induced gradient microstructures in the superficial layer of turbine blade root of single crystal nickel-based superalloy 被引量:3
13
作者 Qing Miao Wenfeng Ding +5 位作者 Jiuhua Xu Lijie Cao Hongcai Wang Zhen Yin Chenwei Dai Weijie Kuang 《International Journal of Extreme Manufacturing》 SCIE EI 2021年第4期89-102,共14页
The service performance of the turbine blade root of an aero-engine depends on the microstructures in its superficial layer.This work investigated the surface deformation structures of turbine blade root of single cry... The service performance of the turbine blade root of an aero-engine depends on the microstructures in its superficial layer.This work investigated the surface deformation structures of turbine blade root of single crystal nickel-based superalloy produced under different creep feed grinding conditions.Gradient microstructures in the superficial layer were clarified and composed of a severely deformed layer(DFL)with nano-sized grains(48–67 nm)at the topmost surface,a DFL with submicron-sized grains(66–158 nm)and micron-sized laminated structures at the subsurface,and a dislocation accumulated layer extending to the bulk material.The formation of such gradient microstructures was found to be related to the graded variations in the plastic strain and strain rate induced in the creep feed grinding process,which were as high as 6.67 and 8.17×10^(7)s^(−1),respectively.In the current study,the evolution of surface gradient microstructures was essentially a transition process from a coarse single crystal to nano-sized grains and,simultaneously,from one orientation of a single crystal to random orientations of polycrystals,during which the dislocation slips dominated the creep feed grinding induced microstructure deformation of single crystal nickel-based superalloy. 展开更多
关键词 gradient microstructure creep feed grinding single crystal nickel-based superalloy DISLOCATION
下载PDF
TEMPERATURE EFFECT ON LOW-CYCLE FATIGUE BEHAVIOR OF NICKEL-BASED SINGLE CRYSTALLINE SUPERALLOY 被引量:5
14
作者 Xianfeng Ma Huiji Shi +3 位作者 Jialin Gu Zhaoxi Wang Harald Harders Thomas Malow 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第4期289-297,共9页
The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low... The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low strain rate of 10^-3 s^-1 in ambient atmosphere. The superalloy exhibited cyclic tension-compression asymmetry which is dependent on the temperature and applied strain amplitude. Analysis on the fracture surfaces showed that the surface and subsurface casting micropores were the major crack initiation sites. Interior Ta-rich carbides were frequently observed in all specimens. Two distinct types of fracture were suggested by fractogaphy. One type was characterized by Mode-I cracking with a microscopically rough surface at To + 250℃. Whereas the other type at lower temperature T0℃ favored either one or several of the octahedral {111} planes, in contrast to the normal Mode-I growth mode typically observed at low loading frequencies (several Hz). The failure mechanisms for two cracking modes are shearing of γ' precipitates together with the matrix at T0℃ and cracking confined in the matrix and the γ/γ'interface at To - 250℃. 展开更多
关键词 low cycle fatigue single crystal nickel-based superalloy
下载PDF
Effect of Threshold Stress on Anisotropic Creep Properties of Single Crystal Nickel-Base Superalloy SRR99 被引量:3
15
作者 Cuoming Han Jinjiang Yu +1 位作者 Xiaofeng Sun Zhuangqi Hu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第5期439-445,共7页
The influence of orientation on the creep properties of the nickel-base single crystal superalloy SRR99 was investigated at 760℃ and various levels of applied stress.It was found that the effect of anisotropy was str... The influence of orientation on the creep properties of the nickel-base single crystal superalloy SRR99 was investigated at 760℃ and various levels of applied stress.It was found that the effect of anisotropy was strikingly prominent at this temperature.Deformation mechanisms of single crystals with three principal orientations at 760℃/790 MPa were explained according to detailed observations of dislocation arrangements by means of transmission electron microscopy (TEM).Liability to shearing γ' precipitates for [011] orientation and co-planar slip for [111] orientation resulted in poor creep strength and short stress rupture life.It was also found that the apparent primary creep strain could be measured when the applied stress was increased to 565 MPa.Modified power law equation was adopted and the concept of a threshold stress σ 0 which determines dislocation looping or shearing to be activated was then involved.Through detailed calculations,the threshold stress was obtained to further analyse the distribution of the applied stress and better rationalize the anisotropic creep behaviour in the stereographic triangle in combination with TEM observations. 展开更多
关键词 single crystal superalloy Anisotropic creep Threshold stress Deformation mechanism
原文传递
A CRYSTALLOGRAPHIC MODEL FOR THE ORIENTATION DEPENDENCE OF LOW CYCLIC FATIGUE PROPERTY OF A NICKEL-BASE SINGLE CRYSTAL SUPERALLOY 被引量:1
16
作者 岳珠峰 陶仙德 +1 位作者 尹泽勇 李海燕 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第4期415-424,共10页
Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain... Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain rates at 950 degrees C. The cyclic strain rates were chosen as 1.0 x 10(-2), 1.33 x 10(-3) and 0.33 x 10(-3) s(-1). The octahedral slip systems were confirmed to be activated on all the specimens. The experimental result shows that the fatigue behavior depends an the crystallographic orientation and cyclic strain rate. Except [0 0 1] orientation specimens, it is found from the scanning electron microscopy(SEM) examination that there are typical fatigue striations on the fracture surfaces. These fatigue striations are made up of cracks. The width of the fatigue striations depends on the crystallographic orientation and varies with the total strain range. A simple linear relationship exists between the width and total shear strain range modified by an orientation and strain rate parameter. The nonconformity to the Schmid law of tensile/compressive flaw stress and plastic behavior existed at 95 degrees C, and an orientation and strain rate modified Lall-Chin-Pope ( LCP) model was derived for the nonconformity. The influence of crysrallographic orientation and cyclic strain rate on the LCF behavior can be predicted satisfactorily by the model. In terms of an orientation and strain rate modified total strain range, a model for fatigue life was proposed and used successfully to correlate the fatigue lives studied. 展开更多
关键词 nickel-base single crystal superalloy low cyclic fatigue crystallographic orientation dependence strain rate cyclic plastic creep life crystallographic plastics
下载PDF
SOLIDIFICATION OF NICKEL-BASED SINGLE CRYSTAL SUPERALLOY BY ELECTRIC FIELD 被引量:2
17
作者 Y.S. Yang X.H. Feng G.F. Cheng Y.J. Li Z.Q. Hu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第6期679-685,共7页
The crystal growth of a nickel-based single crystal superalloy DD3 was researched via controlled directional solidification under the action of a DC electric field. The cellular or dendrite spacing of the single cryst... The crystal growth of a nickel-based single crystal superalloy DD3 was researched via controlled directional solidification under the action of a DC electric field. The cellular or dendrite spacing of the single crystal superalloy is refined and microsegregation of alloying elements Al, Ti, Mo and W, is reduced by the electric field. The electric field decreases the interface stability and reduces the critical growth rate of the ceUular-dendritic translation because of Thomson effect and Joule heating. The precipitation of the γ' phase is more uniform and the size of the γ' phase is smaller with the electric field than that without the electric field. 展开更多
关键词 single crystal superalloy DC electric field crystal growth segregation γ' phase
下载PDF
Evolution mechanism of recrystallization in a nickel-based single crystal superalloy under various cooling rates during heat treatment 被引量:2
18
作者 Yong-shun Li Wei-dong Xuan +4 位作者 Jian Yang Yu-hao Zhou Ge Song Xing-fu Ren Zhong-ming Ren 《China Foundry》 SCIE CAS 2022年第1期27-34,共8页
The recrystallization behaviors of a nickel-based single crystal superalloy during heat treatment at 1,200℃ for 4 h with various cooling rates were studied.Results show that the thickness of recrystallization layer d... The recrystallization behaviors of a nickel-based single crystal superalloy during heat treatment at 1,200℃ for 4 h with various cooling rates were studied.Results show that the thickness of recrystallization layer decreases with the increase of cooling rate.In addition,the microstructures ofγ′phase in the recrystallization region are different in various cooling rates.In the high cooling rates(70,100℃·min^(-1)),small size and high volume fraction ofγ′phases are formed in the recrystallization region.It is also found that irregular fine secondaryγ′phases are precipitated between matrix channels with an average size of 150 nm in the original matric(100℃·min^(-1)).The sizes of the secondaryγ′phase decrease with the increase of cooling rate.In contrast,large size and small volume fraction ofγ′phases are formed in the recrystallization region,and a grain boundary layer is formed under a low cooling rate(10℃·min^(-1)).The evolution mechanism of recrystallization at various cooling rates during heat treatment is analyzed. 展开更多
关键词 REcrystalLIZATION cooling rate γ′phase single crystal superalloy
下载PDF
SOLIDIFICATION AND MICROSEGREGATION BEHAVIORS OF NICKEL-BASE SINGLE CRYSTAL SUPERALLOY SOLIDIFIED AT MEDIUM COOLING RATE 被引量:1
19
作者 Du Wei, Li Jianguo and Fu HengzhiState Key Laboratory of Solidification Processing,Northwestern Polytechnical University, Xi′an 710072, P. R. China 《中国有色金属学会会刊:英文版》 CSCD 1998年第1期84-88,共5页
SOLIDIFICATIONANDMICROSEGREGATIONBEHAVIORSOFNICKELBASESINGLECRYSTALSUPERALLOYSOLIDIFIEDATMEDIUMCOOLINGRATE①... SOLIDIFICATIONANDMICROSEGREGATIONBEHAVIORSOFNICKELBASESINGLECRYSTALSUPERALLOYSOLIDIFIEDATMEDIUMCOOLINGRATE①DuWei,LiJianguoan... 展开更多
关键词 single crystal superalloy COOLING RATE microstructure MICROSEGREGATION
下载PDF
Influence of Pre-Compressive Creep on Internal Friction Stress and Creep Parameters of Nickel-Base Single Crystal Superalloys 被引量:2
20
作者 Yu Xingfu Tian Sugui +3 位作者 Zhao Zhonggang Du Hongqiang Shang Lijuan Cui Shusen 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第A03期28-32,共5页
By means of pre-compressive creep treatment, the cubic γ′ phase in a nickel base single crystal superalloy is transformed into the P-type rafted structure. And the influence of the pre-compressive creep on the inter... By means of pre-compressive creep treatment, the cubic γ′ phase in a nickel base single crystal superalloy is transformed into the P-type rafted structure. And the influence of the pre-compressive creep on the internal friction stress and creep lifetimes of the superalloy are investigated by means of the measurement of the creep curves and microstructure observation. Results show that, compared to the P-type structure alloy, the full heat treated state alloy displays a bigger internal friction stress value of dislocation motion during steady state creep and a longer creep lifetimes. The creep activation energies of the full heat treated and P-type structures alloys are measured to be 462 kJ/mol and 412 kJ/mol, respectively. Thereinto, the P-type rafted γ′ phase in the alloy is transformed into the N-type structure during tensile creep. And the N-type γ′ phase transformed from the P-type structure displays a shorter size in length, this is a main reason of the P-type structure alloy possessing a shorter creep lifetimes due to creep dislocation moving easily over the rafted γ′ phase. 展开更多
关键词 镍基单晶 合金 物理性能 结构分析
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部