Bridgman directional solidification of investment castings is a key technology for the production of reliable and highly efficient gas turbine blades. In this paper, a mathematical model for three-dimensional (3D) s...Bridgman directional solidification of investment castings is a key technology for the production of reliable and highly efficient gas turbine blades. In this paper, a mathematical model for three-dimensional (3D) simulation of solidification process of single crystal investment castings was developed based on basic heat transfer equations. Complex heat radiation among the multiple blade castings and the furnace wall was considered in the model. Temperature distribution and temperature gradient in superalloy investment castings of single blade and multiple ones were investigated, respectively. The calculated cooling curves were compared with the experimental results and agreed well with the latter. It is indicated that the unsymmetrical temperature distribution and curved liquid-solid interface caused by the circle distribution of multiple turbine blades are probably main reasons why the stray grain and other casting defects occur in the turbine blade.展开更多
The three dimensional solidification simulation of the single crystal investment castings at withdrawal rates of 2 mm祄in, 4.5 mm祄in and 7 mm祄in was performed with the finite element thermal analysis method. The cal...The three dimensional solidification simulation of the single crystal investment castings at withdrawal rates of 2 mm祄in, 4.5 mm祄in and 7 mm祄in was performed with the finite element thermal analysis method. The calculated results were in accordance with the experimental ones. The results showed that with the increase of with-drawal rate the concave curvature of the liquidus isotherm was bigger and bigger and the temperature gradient of the castings decreased. No effects of withdrawal rate on the distribution of the temperature gradient of the starter and helical grain selector of the castings were observed at withdrawal rates of 2 mm祄in, 4.5 mm祄in and 7mm祄in. The relatively high temperature gradient between 500癈礳m and 1000癈礳m in the starter and helical grain selector was obtained at three withdrawal rates. The study indicates the three dimensional solidification simulation by finite element method is a powerful tool for understanding solidification and predicting defects in single crystal investment castings.展开更多
The three-dimensional solidification simulation of the investment castings of single crystal hollow turbine blade at the withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min has been performed with the finite element...The three-dimensional solidification simulation of the investment castings of single crystal hollow turbine blade at the withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min has been performed with the finite element thermal analysis. The calculated results are in accordance with the experimental ones. The results show that with the increase of withdrawal rate the concave curvature of the liquidus isotherm is larger and larger, and the temperature gradients of the blades increase. No effects of withdrawal rate on the distribution of the temperature gradients of the starter and helical grain selector of the blades are observed at withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min. The relatively high temperature gradient between 500℃/cm and 1000℃/cm in the starter and helical grain selector is obtained at three withdrawal rates.展开更多
As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeli...As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeling and simulation technology can help to optimize the manufacturing process of SX blades.Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification(DS)process.Coupled with heat transfer(macroscale)and grain growth(meso-scale),3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale.SX grain selection behavior was studied by the simulation and experiments.The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness.Based on the coupled models,heat transfer,grain growth and microstructure evolution of a complex hollow SX blade were simulated.Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process.In order to avoid the formation of the stray crystal,the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade.The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains,which was also proved by the experiments.展开更多
In order to investigate the asymmetry of thermal conditions during directional solidification, the temperature evolution and correspondingly developed undercooling in a simplified single crystal blade cluster were num...In order to investigate the asymmetry of thermal conditions during directional solidification, the temperature evolution and correspondingly developed undercooling in a simplified single crystal blade cluster were numerically simulated. Simulation results demonstrate that the temperature distribution at the blade platforms is obviously asymmetrical. On the outside of the blade which directly faces the heating element, the liquidus(TL) isotherms progress relatively smoothly. On the inside of the blades facing the central rod, however, the TLisotherms are in concave shape and the slope goes upwards to the platform extremities. The average undercooling extent ?T and undercooling time ?t at the inside are much higher than those at the outside. It was then predicted that the inside platform extremities have significantly higher probabilities of stray grain formation compared to the outside ones. A corresponding experiment was carried out and the metallographic examination exhibited the same side-and height-dependence of stray grain formation in the blades as predicted. On the inside of the blades, all platforms are occupied by stray grains, while the platforms on the outside are nearly stray grain free. The simulation result agrees very well with the experimental observation.展开更多
CA (Computer aided) investment casting technique used in superalloy castings of aerospace engine parts was presented. CA investment casting integrated computer application, RP (Rapid Prototyping) process, solidificati...CA (Computer aided) investment casting technique used in superalloy castings of aerospace engine parts was presented. CA investment casting integrated computer application, RP (Rapid Prototyping) process, solidification simulation and investment casting process. It broke the bottle neck of making metal die. Solid model of complex parts were produced by UGII or other software, then translated into STL(Stereolithography) file, after RP process of SLS(Selective Laser Sintering), wax pattern used in investment casting can be acquired without metal die in short time. These can reduce period and cost greatly of complex superalloy parts development of engine. The key processes of CA investment casting were discussed. The accuracy of model translation should match that of RP system. Choice of RP material, surface polishing, sintering parameter plays important role in RP process. Other processes, like solidification simulating and optimization of gate system were introduced. The conclusion was that complex parts can be produced by CA investment casting with lots of advantages. The accuracy of castings can reach CT5~7,and the smoothness can get Ra3~13 mm. These parts of engines worked well.展开更多
Stray grains,the most serious casting defect,mainly occur in the platform because of the abrupt transition of the cross-section in the directional solidification of superalloy single-crystal blades.A new mould baffle ...Stray grains,the most serious casting defect,mainly occur in the platform because of the abrupt transition of the cross-section in the directional solidification of superalloy single-crystal blades.A new mould baffle technology based on 3D printing and gelcasting is proposed herein to reduce the formation of stray grains in the platform.The influence of the proposed mould baffle technology on the temperature field in the platform during solidification was investigated by simulation and experiment.The numerical simulation results indicate that the proposed mould baffle technology can effectively hinder the radiation and heat dissipation at the platform extremities,and therefore,reduce undercooling in the platform and the formation of stray grains during directional solidification.Casting trials of a hollow turbine blade were conducted using CMSX-4 superalloy.The trial results demonstrate the potential of the proposed approach for manufacturing single-crystal superalloy blades.展开更多
Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing ...Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing of turbine blades due to their exceptional high-temperature mechanical properties.The hot manufacturing of single crystal blades involves directional solidification and heat treatment.Experimental manufacturing of these blades is time-consuming,capital-intensive,and often insufficient to meet industrial demands.Numerical simulation techniques have gained widespread acceptance in blade manufacturing research due to their low energy consumption,high efficiency,and rapid turnaround time.This article introduces the modeling and simulation of hot manufacturing in single crystal blades.The discussion outlines the prevalent mathematical models employed in numerical simulations related to blade hot manufacturing.It encapsulates the advancements in research concerning macro to micro-level numerical simulation techniques for directional solidification and heat treatment processes.Furthermore,potential future trajectories for the numerical simulation of single crystal blade hot manufacturing are also discussed.展开更多
Sliver is a common but easily neglected defect in single crystal Ni-based superalloy castings.To date,there is still no unified viewpoint on its formation mechanism and generation causes.In this work,the orientation d...Sliver is a common but easily neglected defect in single crystal Ni-based superalloy castings.To date,there is still no unified viewpoint on its formation mechanism and generation causes.In this work,the orientation discontinuity and motion behavior of sliver defects were studied through experiments and numerical simulations.The ultrathin wedge-shaped specimen containing the grain boundary of the sliver and the matrix was prepared at the initial position of the sliver defect for the observation of equal thick-ness fringes.The discontinuity of equal thickness fringes on both sides of the grain boundary was ob-served through a transmission electron microscope,which directly confirms the abrupt change in the orientation between the sliver and matrix from the nanoscale.The crystal lattices at the smooth area and the bulging area of the grain boundary were found to have unusually different arrangements.The irregular lattice arrangement at the bulging area shows that the grain boundary has experienced high-stress deformation.Statistical results of sliver orientation deviation with a further composition analysis show the micro protuberance of the mold shell has a noticeable inductive effect on the sliver generation.Furthermore,a self-developed three-dimensional phase-field simulation model coupled with the spatial topology algorithm is established to simulate the orientation deflection behavior and orientation devia-tion threshold of fractured dendrites.The simulation results indicated that there is an upper limit of the cross-section solid fraction at the fracture position for the motion of the fractured dendrites.When the cross-section solid fraction at the fracture position is higher than this upper limit,it will be difficult to produce large deviation slivers due to the structural limitation of surrounding dendrites.This upper limit does not change with the solidification temperature gradient.展开更多
An integrative computer aided investment casting (CAIC) technology for making complicated superalloy castings was described. Key processes of CAIC were discussed including the choice of SLS (Selectively Laser Sinterin...An integrative computer aided investment casting (CAIC) technology for making complicated superalloy castings was described. Key processes of CAIC were discussed including the choice of SLS (Selectively Laser Sintering) materials, sintering parameters, solidification simulation and gating and risering system optimization. Using CAIC process, many large-sized quality superalloy castings with complicated shape and thin wall have been produced successfully and economically in Central Iron & steel Research Institute (CISRI).展开更多
This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods ...This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods based on the Bridgman process were presented to illustrate the development in the production of SC blades from super- alloys. The grain continuator and the heat conductor techniques were developed to remove geometry-related grain defects. In these techniques, the heat barrier that hinders lateral SC growth from the blade airfoil into the extremities of the platform is minimized. The parallel heating and cooling system was developed to achieve symmetric thermal conditions for SC solidification in blade clusters, thus considerably decreasing the negative shadow effect and its related defects in the current Bridgman process. The dipping and heaving technique, in which thin- shell molds are utilized, was developed to enable the establishment of a high temperature gradient for SC growth and the freckle-free solidification of superalloy castings. Moreover, by applying the targeted cooling and heating technique, a novel concept for the three-dimen- sional and precise control of SC growth, a proper thermal arrangement may be dynamically established for the microscopic control of SC growth in the critical areas of large industrial gas turbine blades.展开更多
文摘Bridgman directional solidification of investment castings is a key technology for the production of reliable and highly efficient gas turbine blades. In this paper, a mathematical model for three-dimensional (3D) simulation of solidification process of single crystal investment castings was developed based on basic heat transfer equations. Complex heat radiation among the multiple blade castings and the furnace wall was considered in the model. Temperature distribution and temperature gradient in superalloy investment castings of single blade and multiple ones were investigated, respectively. The calculated cooling curves were compared with the experimental results and agreed well with the latter. It is indicated that the unsymmetrical temperature distribution and curved liquid-solid interface caused by the circle distribution of multiple turbine blades are probably main reasons why the stray grain and other casting defects occur in the turbine blade.
文摘The three dimensional solidification simulation of the single crystal investment castings at withdrawal rates of 2 mm祄in, 4.5 mm祄in and 7 mm祄in was performed with the finite element thermal analysis method. The calculated results were in accordance with the experimental ones. The results showed that with the increase of with-drawal rate the concave curvature of the liquidus isotherm was bigger and bigger and the temperature gradient of the castings decreased. No effects of withdrawal rate on the distribution of the temperature gradient of the starter and helical grain selector of the castings were observed at withdrawal rates of 2 mm祄in, 4.5 mm祄in and 7mm祄in. The relatively high temperature gradient between 500癈礳m and 1000癈礳m in the starter and helical grain selector was obtained at three withdrawal rates. The study indicates the three dimensional solidification simulation by finite element method is a powerful tool for understanding solidification and predicting defects in single crystal investment castings.
文摘The three-dimensional solidification simulation of the investment castings of single crystal hollow turbine blade at the withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min has been performed with the finite element thermal analysis. The calculated results are in accordance with the experimental ones. The results show that with the increase of withdrawal rate the concave curvature of the liquidus isotherm is larger and larger, and the temperature gradients of the blades increase. No effects of withdrawal rate on the distribution of the temperature gradients of the starter and helical grain selector of the blades are observed at withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min. The relatively high temperature gradient between 500℃/cm and 1000℃/cm in the starter and helical grain selector is obtained at three withdrawal rates.
基金supported by the National Basic Research Program of China(No.2011CB706801)the National Natural Science Foundation of China(Nos.51171089 and 51374137)the National Science and Technology Major Project(Nos.2011ZX04014-052 and 2012ZX04012-011)
文摘As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeling and simulation technology can help to optimize the manufacturing process of SX blades.Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification(DS)process.Coupled with heat transfer(macroscale)and grain growth(meso-scale),3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale.SX grain selection behavior was studied by the simulation and experiments.The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness.Based on the coupled models,heat transfer,grain growth and microstructure evolution of a complex hollow SX blade were simulated.Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process.In order to avoid the formation of the stray crystal,the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade.The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains,which was also proved by the experiments.
基金supported by the“Shenzhen Peacock Plan”the“Guangdong Innovative&Entrepreneurial Research Team Program”
文摘In order to investigate the asymmetry of thermal conditions during directional solidification, the temperature evolution and correspondingly developed undercooling in a simplified single crystal blade cluster were numerically simulated. Simulation results demonstrate that the temperature distribution at the blade platforms is obviously asymmetrical. On the outside of the blade which directly faces the heating element, the liquidus(TL) isotherms progress relatively smoothly. On the inside of the blades facing the central rod, however, the TLisotherms are in concave shape and the slope goes upwards to the platform extremities. The average undercooling extent ?T and undercooling time ?t at the inside are much higher than those at the outside. It was then predicted that the inside platform extremities have significantly higher probabilities of stray grain formation compared to the outside ones. A corresponding experiment was carried out and the metallographic examination exhibited the same side-and height-dependence of stray grain formation in the blades as predicted. On the inside of the blades, all platforms are occupied by stray grains, while the platforms on the outside are nearly stray grain free. The simulation result agrees very well with the experimental observation.
文摘CA (Computer aided) investment casting technique used in superalloy castings of aerospace engine parts was presented. CA investment casting integrated computer application, RP (Rapid Prototyping) process, solidification simulation and investment casting process. It broke the bottle neck of making metal die. Solid model of complex parts were produced by UGII or other software, then translated into STL(Stereolithography) file, after RP process of SLS(Selective Laser Sintering), wax pattern used in investment casting can be acquired without metal die in short time. These can reduce period and cost greatly of complex superalloy parts development of engine. The key processes of CA investment casting were discussed. The accuracy of model translation should match that of RP system. Choice of RP material, surface polishing, sintering parameter plays important role in RP process. Other processes, like solidification simulating and optimization of gate system were introduced. The conclusion was that complex parts can be produced by CA investment casting with lots of advantages. The accuracy of castings can reach CT5~7,and the smoothness can get Ra3~13 mm. These parts of engines worked well.
基金the Industry-University Research Cooperation Project of Aero Engine Corporation of China(Grant No.HFZL2019CXY023)the National Science and Technology Major Project(Grant No.2017-Ⅶ-0008-0101)。
文摘Stray grains,the most serious casting defect,mainly occur in the platform because of the abrupt transition of the cross-section in the directional solidification of superalloy single-crystal blades.A new mould baffle technology based on 3D printing and gelcasting is proposed herein to reduce the formation of stray grains in the platform.The influence of the proposed mould baffle technology on the temperature field in the platform during solidification was investigated by simulation and experiment.The numerical simulation results indicate that the proposed mould baffle technology can effectively hinder the radiation and heat dissipation at the platform extremities,and therefore,reduce undercooling in the platform and the formation of stray grains during directional solidification.Casting trials of a hollow turbine blade were conducted using CMSX-4 superalloy.The trial results demonstrate the potential of the proposed approach for manufacturing single-crystal superalloy blades.
基金supported by the Stable Support Project and the Major National Science and Technology Project(Grant No.2017-VII-0008-0101).
文摘Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing of turbine blades due to their exceptional high-temperature mechanical properties.The hot manufacturing of single crystal blades involves directional solidification and heat treatment.Experimental manufacturing of these blades is time-consuming,capital-intensive,and often insufficient to meet industrial demands.Numerical simulation techniques have gained widespread acceptance in blade manufacturing research due to their low energy consumption,high efficiency,and rapid turnaround time.This article introduces the modeling and simulation of hot manufacturing in single crystal blades.The discussion outlines the prevalent mathematical models employed in numerical simulations related to blade hot manufacturing.It encapsulates the advancements in research concerning macro to micro-level numerical simulation techniques for directional solidification and heat treatment processes.Furthermore,potential future trajectories for the numerical simulation of single crystal blade hot manufacturing are also discussed.
基金This work was financially supported by the National Science and Technology Major Project(Nos.2017-VⅠ-0003-0073 and 2017-Ⅶ-0008-0101).The authors are grateful to Prof.Yao Kefu and Miss.Liao Yang in Tsinghua University for the assistance and advice with the analysis of TEM results.
文摘Sliver is a common but easily neglected defect in single crystal Ni-based superalloy castings.To date,there is still no unified viewpoint on its formation mechanism and generation causes.In this work,the orientation discontinuity and motion behavior of sliver defects were studied through experiments and numerical simulations.The ultrathin wedge-shaped specimen containing the grain boundary of the sliver and the matrix was prepared at the initial position of the sliver defect for the observation of equal thick-ness fringes.The discontinuity of equal thickness fringes on both sides of the grain boundary was ob-served through a transmission electron microscope,which directly confirms the abrupt change in the orientation between the sliver and matrix from the nanoscale.The crystal lattices at the smooth area and the bulging area of the grain boundary were found to have unusually different arrangements.The irregular lattice arrangement at the bulging area shows that the grain boundary has experienced high-stress deformation.Statistical results of sliver orientation deviation with a further composition analysis show the micro protuberance of the mold shell has a noticeable inductive effect on the sliver generation.Furthermore,a self-developed three-dimensional phase-field simulation model coupled with the spatial topology algorithm is established to simulate the orientation deflection behavior and orientation devia-tion threshold of fractured dendrites.The simulation results indicated that there is an upper limit of the cross-section solid fraction at the fracture position for the motion of the fractured dendrites.When the cross-section solid fraction at the fracture position is higher than this upper limit,it will be difficult to produce large deviation slivers due to the structural limitation of surrounding dendrites.This upper limit does not change with the solidification temperature gradient.
文摘An integrative computer aided investment casting (CAIC) technology for making complicated superalloy castings was described. Key processes of CAIC were discussed including the choice of SLS (Selectively Laser Sintering) materials, sintering parameters, solidification simulation and gating and risering system optimization. Using CAIC process, many large-sized quality superalloy castings with complicated shape and thin wall have been produced successfully and economically in Central Iron & steel Research Institute (CISRI).
文摘This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods based on the Bridgman process were presented to illustrate the development in the production of SC blades from super- alloys. The grain continuator and the heat conductor techniques were developed to remove geometry-related grain defects. In these techniques, the heat barrier that hinders lateral SC growth from the blade airfoil into the extremities of the platform is minimized. The parallel heating and cooling system was developed to achieve symmetric thermal conditions for SC solidification in blade clusters, thus considerably decreasing the negative shadow effect and its related defects in the current Bridgman process. The dipping and heaving technique, in which thin- shell molds are utilized, was developed to enable the establishment of a high temperature gradient for SC growth and the freckle-free solidification of superalloy castings. Moreover, by applying the targeted cooling and heating technique, a novel concept for the three-dimen- sional and precise control of SC growth, a proper thermal arrangement may be dynamically established for the microscopic control of SC growth in the critical areas of large industrial gas turbine blades.