期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Identification of navigation characteristics of single otter trawl vessel using four machine learning models
1
作者 Qi LIU Yunxia CHEN +1 位作者 Haihong MIAO Yingbin WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第3期1206-1219,共14页
Fishing logbook records the fishing behaviors and other information of fishing vessels.However,the accuracy of the recorded information is often difficult to guarantee due to the misreport and concealment.The fishing ... Fishing logbook records the fishing behaviors and other information of fishing vessels.However,the accuracy of the recorded information is often difficult to guarantee due to the misreport and concealment.The fishing vessel monitoring system(VMS)can monitor and record the navigation information of fishing vessels in real time,and it may be used to improve the accuracy of identifying the state of fishing vessels.If the VMS data and fishing logbook are combined to establish their relationships,then the navigation characteristics and fishing behavior of fishing vessels can be more accurately identified.Therefore,first,a method for determining the state of VMS data points using fishing log data was proposed.Secondly,the relationship between VMS data and the different states of fishing vessels was further explored.Thirdly,the state of the fishing vessel was predicted using VMS data by building machine learning models.The speed,heading,longitude,latitude,and time as features from the VMS data were extracted by matching the VMS and logbook data of three single otter trawl vessels from September 2012 to January 2013,and four machine learning models were established,i.e.,Random Forest(RF),Adaptive Boosting(AdaBoost),K-Nearest Neighbor(KNN),and Gradient Boosting Decision Tree(GBDT)to predict the behavior of fishing vessels.The prediction performances of the models were evaluated by using normalized confusion matrix and receiver operator characteristic curve.Results show that the importance rankings of spatial(longitude and latitude)and time features were higher than those of speed and heading.The prediction performances of the RF and AdaBoost models were higher than those of the KNN and GBDT models.RF model showed the highest prediction performance for fishing state.Meanwhile,AdaBoost model exhibited the highest prediction performance for non-fishing state.This study offered a technical basis for judging the navigation characteristics of fishing vessels,which improved the algorithm for judging the behavior of fishing vessels based on VMS data,enhanced the prediction accuracy,and upgraded the fishery management being more scientific and efficient. 展开更多
关键词 vessel monitoring system(VMS) fishing logbook single otter trawler state identification machine learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部