A single screw compressor (SSC) is an important component found in many refrigeration systems.However,the durability is not so good because of the friction between its meshing pair.Therefore the column envelope meshin...A single screw compressor (SSC) is an important component found in many refrigeration systems.However,the durability is not so good because of the friction between its meshing pair.Therefore the column envelope meshing pair was pro-posed to prolong the operating life of SSCs,although it has not been applied to commercial refrigeration systems.To accelerate the industrial application,a mathematical model for analyzing the column envelope meshing pair is established based on the geometry and kinematics.Equations giving the flanks of column envelope grooves are obtained,and teeth flank meshing with the groove is designed.Results show that this model could be applicable in the design of the column envelope type SSC.展开更多
The single screw compressor(SSC)is widely used in air compression and refrigeration systems due to its many advantages.The meshing clearance between the screw groove and gate rotor teeth flank has a significant influe...The single screw compressor(SSC)is widely used in air compression and refrigeration systems due to its many advantages.The meshing clearance between the screw groove and gate rotor teeth flank has a significant influence on the compressor performance.In this paper,mathematical calculation models describing the internal working process of the SSC are established in order to evaluate the thermal dynamic characteristics of the compressor under varying meshing clearance heights.The refrigerating capacity,volume efficiency and adiabatic efficiency of the SSC are calculated and discussed.Three prototypes,with different meshing clearance heights,were manufactured to study the internal influence mechanisms.The theoretical model was verified using experimental data and the calculation results strongly agreed with the experimental results.Results demonstrate that comparisons of volume efficiency and adiabatic efficiency between the measured and calculated results exhibited deviations of 3.64%-7.98%and 5.92%-9.4%,respectively.Based on the models,analysis under varying meshing clearance heights and working conditions was performed.Taking into account working performance,actual manufacturing conditions and manufacturing cost limitations,a meshing clearance height range from 0.01 mm to 0.08 mm is suggested.This study can provide important theoretical data and experimental support for the design,manufacturing and optimization of single screw compressors.展开更多
基金Project(No.2008AA05Z203)supported by the Hi-Tech Research & Development(863)Program of China
文摘A single screw compressor (SSC) is an important component found in many refrigeration systems.However,the durability is not so good because of the friction between its meshing pair.Therefore the column envelope meshing pair was pro-posed to prolong the operating life of SSCs,although it has not been applied to commercial refrigeration systems.To accelerate the industrial application,a mathematical model for analyzing the column envelope meshing pair is established based on the geometry and kinematics.Equations giving the flanks of column envelope grooves are obtained,and teeth flank meshing with the groove is designed.Results show that this model could be applicable in the design of the column envelope type SSC.
基金the financial support provided by the National Key R&D Program of China(NO.2016YFC0700403)Beijing Municipal Natural Science Foundation(NO.3181001)Project supported by Beijing Chaoyang District Postdoctoral Research Foundation(NO.2018ZZ-01-28)。
文摘The single screw compressor(SSC)is widely used in air compression and refrigeration systems due to its many advantages.The meshing clearance between the screw groove and gate rotor teeth flank has a significant influence on the compressor performance.In this paper,mathematical calculation models describing the internal working process of the SSC are established in order to evaluate the thermal dynamic characteristics of the compressor under varying meshing clearance heights.The refrigerating capacity,volume efficiency and adiabatic efficiency of the SSC are calculated and discussed.Three prototypes,with different meshing clearance heights,were manufactured to study the internal influence mechanisms.The theoretical model was verified using experimental data and the calculation results strongly agreed with the experimental results.Results demonstrate that comparisons of volume efficiency and adiabatic efficiency between the measured and calculated results exhibited deviations of 3.64%-7.98%and 5.92%-9.4%,respectively.Based on the models,analysis under varying meshing clearance heights and working conditions was performed.Taking into account working performance,actual manufacturing conditions and manufacturing cost limitations,a meshing clearance height range from 0.01 mm to 0.08 mm is suggested.This study can provide important theoretical data and experimental support for the design,manufacturing and optimization of single screw compressors.