期刊文献+
共找到155,287篇文章
< 1 2 250 >
每页显示 20 50 100
Single-atom Pt on carbon nanotubes for selective electrocatalysis 被引量:1
1
作者 Samuel S.Hardisty Xiaoqian Lin +1 位作者 Anthony R.J.Kucernak David Zitoun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期63-71,共9页
Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reactio... Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reaction(HOR).Herein,we describe the synthesis of a Pt single electrocatalyst inside single-walled carbon nanotubes(SWCNTs)via a redox reaction.Characterizations via electron microscopy,X-ray photoelectron microscopy,and X-ray absorption spectroscopy show the single-atom nature of the Pt.The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique,which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst.The single-atom samples showed higher HOR activity than state-of-the-art 30%Pt/C while almost no oxygen reduction reaction activity in the proton exchange membrane fuel cell operating range.The selective activity toward HOR arose as the main fingerprint of the catalyst confinement in the SWCNTs. 展开更多
关键词 CONFINEMENT ELECTROCATALYSIS hydrogen PLATINUM single atom catalysts
下载PDF
Metal-organic framework-based single-atom electro-/ photocatalysts: Synthesis, energy applications, and opportunities
2
作者 Munir Ahmad Jiahui Chen +10 位作者 Jianwen Liu Yan Zhang Zhongxin Song Shahzad Afzal Waseem Raza Liaqat Zeb Andleeb Mehmood Arshad Hussain Jiujun Zhang Xian-Zhu Fu Jing-Li Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期1-43,共43页
Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further de... Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs. 展开更多
关键词 carbon energy generation MOF-derived-supported MOF-supported single atoms
下载PDF
Advances of Synergistic Electrocatalysis Between Single Atoms and Nanoparticles/Clusters
3
作者 Guanyu Luo Min Song +6 位作者 Qian Zhang Lulu An Tao Shen Shuang Wang Hanyu Hu Xiao Huang Deli Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期377-412,共36页
Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enh... Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance,simultaneously provide a radical analysis of the interrelationship between structure and activity.In this review,the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized.Firstly,the synthetic strategies,characterization,dynamics and types of single atoms coupled with clusters/nanoparticles are introduced,and then the key factors controlling the structure of the composite catalysts are discussed.Next,several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated.Eventually,the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined. 展开更多
关键词 single atoms NANOPARTICLES CLUSTERS Synergistic composite catalysts Synergistic effect
下载PDF
Precise construction of RuPt dual single-atomic sites to optimize oxygen electrocatalytic behaviors for high-performance Zn-air batteries
4
作者 Xiaolin Hu Zhenkun Wu Chaohe Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期520-528,I0011,共10页
The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual si... The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual single atoms(DSAs)in a zinc-zeolitic imidazolate framework(Zn-ZIF),followed by calcination under an N_(2) atmosphere to synthesize ruthenium-platinum DSAs supported on a nitrogendoped carbon substrate(RuPt DSAs-NC).Theoretical calculations showed that the degree of Ru 5dxz-~*O 2p_x orbital hybridization was high when^(*)O was adsorbed at the Ru site,indicating enhanced covalent hybridization of metal sites and oxygen ligands,which benefited the adsorption of intermediate species.The presence of the RuPtN_6 active center optimized the absorption-desorption behavior of intermediates,improving the electrocatalytic performance of the oxygen reduction reaction(ORR)and the oxygen evolution reaction(DER),RuPt DSAs-NC exhibited a 0.87 V high half-wave potential and a 268 mV low overpotential at 10 mA cm^(-2)in an alkaline environment.Furthermore,rechargeable zinc-air batteries(ZABs)achieved a peak power density of 171 MW cm^(-2).The RuPt DSAs-NC demonstrated long-term cycling for up to 500 h with superior round-trip efficiency.This study provided an effective structural design strategy to construct DSAs active sites for enhanced electrocata lytic performance. 展开更多
关键词 Dual single atoms catalysts atom capture Oxygen reduction reaction Oxygen evolution reaction Rechargeable Zn-air batteries
下载PDF
Cooperation between single atom catalyst and support to promote nitrogen electroreduction to ammonia:A theoretical insight
5
作者 Wanying Guo Siyao Wang +2 位作者 Hongxia Wang Qinghai Cai Jingxiang Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期336-344,共9页
The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing mul... The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing multiple intermediates and pathways.Herein,we utilized defective BC_(3)monolayer-supported SACs as a prototype to investigate the cooperative effects of SACs and their support on the catalytic performance of the nitrogen reduction reaction(NRR)for ammonia(NH_(3))production.The results showed that these SACs can be firmly stabilized on these defective BC_(3)supports with high stability against aggregation.Furthermore,co-activation of the inert N_(2)reactant was observed in certain embedded SACs and their neighboring B atoms on certain BC3 sheets due to the noticeable charge transfer and significant N–N bond elongation.Our high-throughput screening revealed that the Mo/DV_(CC)and W/DV_(CC)exhibit superior NRR catalytic performance,characterized by a low limiting potential of−0.33 and−0.43 V,respectively,which can be further increased under acid conditions based on the constant potential method.Moreover,varying NRR catalytic activities can be attributed to the differences in the valence state of active sites.Remarkably,further microkinetic modeling analysis displayed that the turnover frequency of N_(2)–to–NH_(3)conversion on Mo/DV_(CC)is as large as 1.20×10^(−3)s^(−1)site^(−1) at 700 K and 100 bar,thus guaranteeing its ultra-fast reaction rate.Our results not only suggest promising advanced electrocatalysts for NRR but also offer an effective avenue to regulate the electrocatalytic performance via the co-catalytic metal–support interactions. 展开更多
关键词 CO-CATALYSIS single atom catalyst Nitrogen reduction DFT computations
下载PDF
Preparation of single atom catalysts for high sensitive gas sensing
6
作者 Xinxin He Ping Guo +7 位作者 Xuyang An Yuyang Li Jiatai Chen Xingyu Zhang Lifeng Wang Mingjin Dai Chaoliang Tan Jia Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期216-248,共33页
Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the ... Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the semiconductor-based electrical gas sensor,the core is the catalysis process of target gas molecules on the sensitive materials.In this context,the SACs offer great potential for highly sensitive and selective gas sensing,however,only some of the bubbles come to the surface.To facilitate practical applications,we present a comprehensive review of the preparation strategies for SACs,with a focus on overcoming the challenges of aggregation and low loading.Extensive research efforts have been devoted to investigating the gas sensing mechanism,exploring sensitive materials,optimizing device structures,and refining signal post-processing techniques.Finally,the challenges and future perspectives on the SACs based gas sensing are presented. 展开更多
关键词 single atom catalysts PREPARATION sensing mechanism gas sensing
下载PDF
Single-atom photo-catalysts:Synthesis,characterization,and applications
7
作者 Siqi Li Ziwang Kan +4 位作者 He Wang Jiaxiao Bai Yunyi Liu Song Liu Yingjie Wu 《Nano Materials Science》 EI CAS CSCD 2024年第3期284-304,共21页
Single-atom catalysts(SACs)are gaining popularity in catalytic reactions due to their nearly 100%atomic utilization and defined active sites,which provide great convenience for studying the catalytic mechanism of cata... Single-atom catalysts(SACs)are gaining popularity in catalytic reactions due to their nearly 100%atomic utilization and defined active sites,which provide great convenience for studying the catalytic mechanism of catalysts.However,SACs still present challenges such as complex formation processes,low loading and easy agglomeration of catalysts.Herein,we systematically discuss the synthesis methods for SACs,including coprecipitation,impregnation,atomic layer deposition,pyrolysis and Anti-Ostwald ripening etc.Various techniques for characterizing single-atom catalysts(SACs)are described in detail.The utilization of individual atoms in various photocatalytic reactions and their mechanisms of action in different reactions are explained.The purpose of this review is to introduce single-atom synthesis methods,characterization techniques,specific catalytic action and their applications in the direction of photocatalysis,and to provide a reference for the industrialization of photocatalytic single-atoms,which is currently impossible,in the hope of promoting further development of photocatalytic single-atoms. 展开更多
关键词 PHOTOCATALYSIS single atom Catalytic mechanism
下载PDF
Highly Sensitive Ammonia Gas Sensors at Room Temperature Based on the Catalytic Mechanism of N,C Coordinated Ni Single-Atom Active Center
8
作者 Wenjing Quan Jia Shi +10 位作者 Min Zeng Wen Lv Xiyu Chen Chao Fan Yongwei Zhang Zhou Liu Xiaolu Huang Jianhua Yang Nantao Hu Tao Wang Zhi Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期515-531,共17页
Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption prop... Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research. 展开更多
关键词 Gas sensor single atom Catalytic activation Targeted adsorption End-sealing passivation
下载PDF
Achieving Negatively Charged Pt Single Atoms on Amorphous Ni(OH)_(2)Nanosheets with Promoted Hydrogen Absorption in Hydrogen Evolution
9
作者 Yue Liu Gui Liu +6 位作者 Xiangyu Chen Chuang Xue Mingke Sun Yifei Liu Jianxin Kang Xiujuan Sun Lin Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期213-224,共12页
Single-atom(SA)catalysts with nearly 100%atom utilization have been widely employed in electrolysis for decades,due to the outperforming catalytic activity and selectivity.However,most of the reported SA catalysts are... Single-atom(SA)catalysts with nearly 100%atom utilization have been widely employed in electrolysis for decades,due to the outperforming catalytic activity and selectivity.However,most of the reported SA catalysts are fixed through the strong bonding between the dispersed single metallic atoms with nonmetallic atoms of the substrates,which greatly limits the controllable regulation of electrocatalytic activity of SA catalysts.In this work,Pt-Ni bonded Pt SA catalyst with adjustable electronic states was successfully constructed through a controllable electrochemical reduction on the coordination unsaturated amorphous Ni(OH)_(2)nanosheet arrays.Based on the X-ray absorption fine structure analysis and first-principles calculations,Pt SA was bonded with Ni sites of amorphous Ni(OH)_(2),rather than conventional O sites,resulting in negatively charged Pt^(δ-).In situ Raman spectroscopy revealed that the changed configuration and electronic states greatly enhanced absorbability for activated hydrogen atoms,which were the essential intermediate for alkaline hydrogen evolution reaction.The hydrogen spillover process was revealed from amorphous Ni(OH)_(2)that effectively cleave the H-O-H bond of H_(2)O and produce H atom to the Pt SA sites,leading to a low overpotential of 48 mV in alkaline electrolyte at-1000 mA cm^(-2)mg^(-1)_(Pt),evidently better than commercial Pt/C catalysts.This work provided new strategy for the control-lable modulation of the local structure of SA catalysts and the systematic regulation of the electronic states. 展开更多
关键词 Hydrogen evolution reaction AMORPHOUS Pt single atoms Hydrogen spillover
下载PDF
Optimizing high-coordination shell of Co-based single-atom catalysts for efficient ORR and zinc-air batteries
10
作者 Yugang Qi Qing Liang +9 位作者 Kexin Song Xinyan Zhou Meiqi Liu Wenwen Li Fuxi Liu Zhou Jiang Xu Zou Zhongjun Chen Wei Zhang Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期306-314,I0007,共10页
Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and... Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion. 展开更多
关键词 ELECTROCATALYTIC Oxygen reduction reaction single atom catalyst Shell coordination optimization
下载PDF
Single atom doping induced charge-specific distribution of Cu1-TiO_(2) for selective aniline oxidation via a new mechanism
11
作者 Jiaheng Qin Wantong Zhao +6 位作者 Jie Song Nan Luo Zheng-Lan Ma Baojun Wang Jiantai Ma Riguang Zhang Yu Long 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期98-111,共14页
Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile... Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites,achieving precise selectivity control in complex organic reactions,is a highly desirable yet challenging endeavor.Meanwhile,identifying the active site also represents a significant obstacle,primarily due to the intricate electronic environment of single atom site doped metal oxide.Herein,a single atom Cu doped TiO_(2)catalyst(Cu_(1)-TiO_(2)) is prepared via a simple“colloid-acid treatment”strategy,which switches aniline oxidation selectivity of TiO_(2) from azoxybenzene to nitrosobenzene,without using additives or changing solvent,while other metal or nonmetal doped TiO_(2) did not possess.Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate,two PhNOH condense to azoxybenzene over TiO_(2) catalyst.As for Cu_(1)-TiO_(2),the charge-specific distribution between the isolated Cu and TiO_(2) generates unique Cu_(1)-O-Ti hybridization structure with nine catalytic active sites,eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene.This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites. 展开更多
关键词 single atom doped metal oxide Aniline oxidation Selectivity New mechanism Active site
下载PDF
Manipulating photogenerated electron flow in nickel single‐atom catalysts for photocatalytic CO_(2)reduction into tunable syngas
12
作者 Yida Zhang Qingyu Wang +5 位作者 Lihui Wu Haibin Pan Chengyuan Liu Yue Lin Gongming Wang Xusheng Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期205-213,共9页
The key to designing photocatalysts is to orient the migration of photogenerated electrons to the target active sites rather than dissipate at inert sites.Herein,we demonstrate that the doping of phosphorus(P)signific... The key to designing photocatalysts is to orient the migration of photogenerated electrons to the target active sites rather than dissipate at inert sites.Herein,we demonstrate that the doping of phosphorus(P)significantly enriches photogenerated electrons at Ni active sites and enhances the performance for CO_(2)reduction into syngas.During photocatalytic CO_(2)reduction,Ni single‐atom‐anchored P‐modulated carbon nitride showed an impressive syngas yield rate of 85μmol gcat^(−1)h^(−1)and continuously adjustable CO/H_(2)ratios ranging from 5:1 to 1:2,which exceeded those of most of the reported carbon nitride‐based single‐atom catalysts.Mechanistic studies reveal that P doping improves the conductivity of catalysts,which promotes photogenerated electron transfer to the Ni active sites rather than dissipate randomly at low‐activity nonmetallic sites,facilitating the CO_(2)‐to‐syngas photoreduction process. 展开更多
关键词 carbon nitride CO_(2)photoreduction electron flow Ni single atoms SYNGAS
下载PDF
Confined cobalt single-atom catalysts with strong electronic metal-support interactions based on a biomimetic self-assembly strategy
13
作者 Bowen Guo Zekun Wang +3 位作者 Lei Zheng Guang Mo Hongjun Zhou Dan Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期156-171,共16页
Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we ut... Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures. 展开更多
关键词 biomimetic self-assembly support electronic metal-support interactions oxygen evolution reaction single atoms catalysts
下载PDF
Multifunctional Film Assembled from N‑Doped Carbon Nanofiber with Co–N_(4)–O Single Atoms for Highly Efficient Electromagnetic Energy Attenuation
14
作者 Jia Xu Bei Li +5 位作者 Zheng Ma Xiao Zhang Chunling Zhu Feng Yan Piaoping Yang Yujin Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期359-376,共18页
Single-atom materials have demonstrated attractive physicochemical characteristics.However,understanding the relationships between the coordination environment of single atoms and their properties at the atomic level ... Single-atom materials have demonstrated attractive physicochemical characteristics.However,understanding the relationships between the coordination environment of single atoms and their properties at the atomic level remains a considerable challenge.Herein,a facile waterassisted carbonization approach is developed to fabricate well-defined asymmetrically coordinated Co–N_(4)–O sites on biomass-derived carbon nanofiber(Co–N_(4)–O/NCF)for electromagnetic wave(EMW)absorption.In such nanofiber,one atomically dispersed Co site is coordinated with four N atoms in the graphene basal plane and one oxygen atom in the axial direction.In-depth experimental and theoretical studies reveal that the axial Co–O coordination breaks the charge distribution symmetry in the planar porphyrin-like Co–N_(4) structure,leading to significantly enhanced dielectric polarization loss relevant to the planar Co–N_(4) sites.Importantly,the film based on Co–N_(4)–O/NCF exhibits light weight,flexibility,excellent mechanical properties,great thermal insulating feature,and excellent EMW absorption with a reflection loss of−45.82 dB along with an effective absorption bandwidth of 4.8 GHz.The findings of this work offer insight into the relationships between the single-atom coordination environment and the dielectric performance,and the proposed strategy can be extended toward the engineering of asymmetrically coordinated single atoms for various applications. 展开更多
关键词 Co single atoms Asymmetric coordination structure Axial oxygen coordination Electromagnetic wave absorption Multifunctional film
下载PDF
Crystallographically vacancy‐induced MOF nanosheet as rational single‐atom support for accelerating CO_(2)electroreduction to CO
15
作者 Jin Hyuk Cho Joonhee Ma +12 位作者 Chaehyeon Lee Jin Wook Lim Youngho Kim Ho Yeon Jang Jaehyun Kim Myung‐gi Seo Youngheon Choi Youn Jeong Jang Sang Hyun Ahn Ho Won Jang Seoin Back Jong‐Lam Lee Soo Young Kim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期49-62,共14页
To attain a circular carbon economy and resolve CO_(2)electroreduction technology obstacles,single‐atom catalysts(SACs)have emerged as a logical option for electrocatalysis because of their extraordinary catalytic ac... To attain a circular carbon economy and resolve CO_(2)electroreduction technology obstacles,single‐atom catalysts(SACs)have emerged as a logical option for electrocatalysis because of their extraordinary catalytic activity.Among SACs,metal–organic frameworks(MOFs)have been recognized as promising support materials because of their exceptional ability to prevent metal aggregation.This study shows that atomically dispersed Ni single atoms on a precisely engineered MOF nanosheet display a high Faradaic efficiency of approximately 100%for CO formation in H‐cell and three‐compartment microfluidic flow‐cell reactors and an excellent turnover frequency of 23,699 h−1,validating their intrinsic catalytic potential.These results suggest that crystallographic variations affect the abundant vacancy sites on the MOF nanosheets,which are linked to the evaporation of Zn‐containing organic linkers during pyrolysis.Furthermore,using X‐ray absorption spectroscopy and density functional theory calculations,a comprehensive investigation of the unsaturated atomic coordination environments and the underlying mechanism involving CO^(*)preadsorbed sites as initial states was possible and provided valuable insights. 展开更多
关键词 2‐dimensional material carbon dioxide reduction metal-organic frameworks singleatom catalysts vacancy sites
下载PDF
Metal-N_(4)model single‐atom catalyst with electroneutral quadri‐pyridine macrocyclic ligand for CO_(2)electroreduction
16
作者 Jian‐Zhao Peng Yin‐Long Li +7 位作者 Yao‐Ti Cheng Fu‐Zhi Li Bo Cao Qing Wang Xian Yue Guo‐Tao Lai Yang‐Gang Wang Jun Gu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期122-133,共12页
Metal–N–C single‐atom catalysts,mostly prepared from pyrolysis of metalorganic precursors,are widely used in heterogeneous electrocatalysis.Since metal sites with diverse local structures coexist in this type of ma... Metal–N–C single‐atom catalysts,mostly prepared from pyrolysis of metalorganic precursors,are widely used in heterogeneous electrocatalysis.Since metal sites with diverse local structures coexist in this type of material and it is challenging to characterize the local structure,a reliable structure–property relationship is difficult to establish.Conjugated macrocyclic complexes adsorbed on carbon support are well‐defined models to mimic the singleatom catalysts.Metal–N_(4)site with four electroneutral pyridine‐type ligands embedded in a graphene layer is the most commonly proposed structure of the active site of single‐atom catalysts,but its molecular counterpart has not been reported.In this work,we synthesized the conjugated macrocyclic complexes with a metal center(Co,Fe,or Ni)coordinated with four electroneutral pyridinic ligands as model catalysts for CO_(2)electroreduction.For comparison,the complexes with anionic quadri‐pyridine macrocyclic ligand were also prepared.The Co complex with the electroneutral ligand expressed a turnover frequency of CO formation more than an order of magnitude higher than that of the Co complex with the anionic ligand.Constrained ab initio molecular dynamics simulations based on the well‐defined structures of the model catalysts indicate that the Co complex with the electroneutral ligand possesses a stronger ability to mediate electron transfer from carbon to CO_(2). 展开更多
关键词 ab initio molecular dynamics CO_(2)reduction electrocatalysis model catalyst singleatom catalyst
下载PDF
Bimetallic CoNi single atoms supported on three-dimensionally ordered mesoporous chromia:highly active catalysts for n-hexane combustion
17
作者 Xiuqing Hao Yuxi Liu +4 位作者 Jiguang Deng Lin Jing Jia Wang Wenbo Pei Hongxing Dai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1122-1137,共16页
Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile... Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O. 展开更多
关键词 Three-dimensional ordered mesoporous chromium oxide Supported bimetallic single-atom catalyst Cobalt-nickel single atoms n-Hexane combustion Catalytic reaction mechanism
下载PDF
Exploring the Roles of Single Atom in Hydrogen Peroxide Photosynthesis
18
作者 Kelin He Zimo Huang +3 位作者 Chao Chen Chuntian Qiu Yu Lin Zhong Qitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期32-67,共36页
This comprehensive review provides a deep exploration of the unique roles of single atom catalysts(SACs)in photocatalytic hydrogen peroxide(H_(2)O_(2))production.SACs offer multiple benefits over traditional catalysts... This comprehensive review provides a deep exploration of the unique roles of single atom catalysts(SACs)in photocatalytic hydrogen peroxide(H_(2)O_(2))production.SACs offer multiple benefits over traditional catalysts such as improved efficiency,selectivity,and flexibility due to their distinct electronic structure and unique properties.The review discusses the critical elements in the design of SACs,including the choice of metal atom,host material,and coordination environment,and how these elements impact the catalytic activity.The role of single atoms in photocatalytic H_(2)O_(2)production is also analysed,focusing on enhancing light absorption and charge generation,improving the migration and separation of charge carriers,and lowering the energy barrier of adsorption and activation of reactants.Despite these advantages,several challenges,including H_(2)O_(2)decomposition,stability of SACs,unclear mechanism,and low selectivity,need to be overcome.Looking towards the future,the review suggests promising research directions such as direct utilization of H_(2)O_(2),high-throughput synthesis and screening,the creation of dual active sites,and employing density functional theory for investigating the mechanisms of SACs in H_(2)O_(2)photosynthesis.This review provides valuable insights into the potential of single atom catalysts for advancing the field of photocatalytic H_(2)O_(2)production. 展开更多
关键词 single atom catalysts H_(2)O_(2)photosynthesis Catalyst design and optimization
下载PDF
Single-atom catalysts based on polarization switching of ferroelectric In_(2)Se_(3) for N_(2) reduction
19
作者 Nan Mu Tingting Bo +3 位作者 Yugao Hu Ruixin Xu Yanyu Liu Wei Zhou 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期244-257,共14页
The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal a... The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes. 展开更多
关键词 In_(2)Se_(3) monolayer Density functional theory Ferroelectric switching single atom catalysts Nitrogen reduction reaction Machine learning
下载PDF
Geometric properties of the first singlet S-wave excited state of two-electron atoms near the critical nuclear charge
20
作者 Tong Chen Sanjiang Yang +2 位作者 Wanping Zhou Xuesong Mei d Haoxue Qiao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期213-219,共7页
The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basi... The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basis set.Contrary to the localized behavior observed in the ground and the doubly excited 2p^(23)Pe states,for this state our results identify that while the behavior of the inner electron increasingly resembles that of a hydrogen-like atomic system,the outer electron in the excited state exhibits diffused hydrogen-like character and becomes perpendicular to the inner electron as nuclear charge Z approaches Z_(c).This study provides insights into the electronic structure and stability of the two-electron system in the vicinity of the critical nuclear charge. 展开更多
关键词 critical nuclear charge two-electron atomic system geometric structure density distribution
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部