Staphylococcus aureus is a gram-staining positive cocci bacillus baterium and also one of the foodborne pathogens, which is a serious potential hazard to human health and food safety. We constructed an electroche...Staphylococcus aureus is a gram-staining positive cocci bacillus baterium and also one of the foodborne pathogens, which is a serious potential hazard to human health and food safety. We constructed an electrochemical biosensor for the detection of S. aureus based on nucleic acid aptamers to achieve highly specific detection of S. aureus. The detection of S. aureus was realized by using Aptamer (Apt) to capture S. aureus, which resulted in a change in the spatial conformation of Apt and a decrease in the electrochemical signal. Under the optimized experimental conditions, the detected electrochemical signals were positively correlated with the concentration of S. aureus with a linear range of 1 × 10<sup>1</sup> - 1 × 10<sup>5</sup> CFU/mL, a detection limit of 4.76 CFU/mL, and an experimental recovery of 97.43% - 99.37%. Therefore, we successfully constructed an electrochemical biosensor for the specific detection of S. aureus, which has the advantages of high specificity, sensitive detection and convenient operation.展开更多
Lymphomas are cancers that arise from white blood cells and usually present as solid tumors. Treatment of lymphoma often involves chemotherapy, and can also include radiotherapy and/or bone marrow transplantation. The...Lymphomas are cancers that arise from white blood cells and usually present as solid tumors. Treatment of lymphoma often involves chemotherapy, and can also include radiotherapy and/or bone marrow transplantation. There is an unquestioned need for more effective therapies and diagnostic tool for lymphoma. Aptamers are single stranded DNA or RNA oligonucleotides whose three-dimensional structures are dictated by their sequences. The immense diversity in function and structure of nucleic acids enable numerous aptamers to be generated through an iterative in vitro selection technique known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Aptamers have several biochemical properties that make them attractive tools for use as potential diagnostic and pharmacologic agents. Isolated aptamers may directly inhibit the function of target proteins, or they can also be formulated for use as delivery agents for other therapeutic or imaging cargoes. More complex aptamer identification methods, using whole cancer cells (Cell-SELEX), may identify novel targets and aptamers to affect them. This review focuses on recent advances in the use of nucleic acid aptamers as diagnostic and therapeutic agents and as targeted delivery carriers that are relevant to lymphoma. Some representative examples are also discussed.展开更多
Peptide nucleic acids (PNAs) are synthetic oligonucleotides with chemically modified backbones. PNAs can bind to both DNA and RNA targets in a sequence-specific manner to form PNA/DNA and PNA/RNA duplex structures. Wh...Peptide nucleic acids (PNAs) are synthetic oligonucleotides with chemically modified backbones. PNAs can bind to both DNA and RNA targets in a sequence-specific manner to form PNA/DNA and PNA/RNA duplex structures. When bound to double-stranded DNA (dsDNA) targets, the PNA molecule replaces one DNA strand in the duplex by strand invasion to form a PNA/DNA/PNA [or (PNA)2/DNA] triplex structure and the displaced DNA strand exists as a singlestranded D-loop. PNA has been used in many studies as research tools for gene regulation and gene targeting. The Dloops generated from the PNA binding have also been demonstrated for its potential in initiating transcription and inducing gene expression. PNA provides a powerful tool to study the mechanism of transcription and an innovative strategy to regulate target gene expression. An understanding of the PNA-mediated gene regulation will have important clinical implications in treatment of many human diseases including genetic, cancerous, and age-related diseases.展开更多
In this review,we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus(HCV)infection.Because the HCV genome is present exclusively in RNA form during replication,various...In this review,we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus(HCV)infection.Because the HCV genome is present exclusively in RNA form during replication,various nucleic acid-based therapeutic approaches targeting the HCV genome,such as ribozymes,aptamers,siRNAs,and antisense oligonucleotides,have been suggested as potential tools against HCV.Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics.These limitations have hampered the clinical development of nucleic acid-based therapeutics.However,despite these limitations,nucleic acid-based therapeutics has clinical value due to their great specificity,easy and large-scale synthesis with chemical methods,and pharmaceutical flexibility.Moreover,nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle,and therefore they may prove to be more effective than existing therapeutics,such as interferon-αand ribavirin combination therapy.This review focuses on the current status and future prospects of ribozymes,aptamers,siRNAs,and antisense oligonucleotides as therapeutic reagents against HCV.展开更多
Ergot alkaloids are mycotoxins which can be found in food based on cereal-crops, due to a contamination of plants by fungi of the genus Claviceps. The ingestion of ergot contaminated cereal crops can lead to a severe ...Ergot alkaloids are mycotoxins which can be found in food based on cereal-crops, due to a contamination of plants by fungi of the genus Claviceps. The ingestion of ergot contaminated cereal crops can lead to a severe poisoning known as ergotism. For food and feed safety purposes, the extraction of ergot alkaloids from ergot contaminated flour was investigated. For the specific recognition of ergot alkaloids, DNA aptamer ligands specially selected for ergot alkaloids were grafted onto silica gel in order to construct a specific solid phase extraction system. The aptamer-functionalized silica gels were used to extract ergot alkaloids from a contaminated rye feed sample. The presence of ergot alkaloids eluted from the aptamer-functionalized silica gels was analyzed using LC-QTOF-MS. By using this simple system, it was possible to specifically extract ergosine, ergokryptine and ergocornine from an ergot contaminated rye feed sample. This aptamer-based extraction tool shows the applicability of aptamers for the specific extraction of toxins or natural compounds from turbid matrices in a one-step procedure.展开更多
采用核酸适配体作为特异性识别元件,SYBR Green I(SGI)荧光染料为信号输出单元,构建了黄曲霉毒素B_1(AFB_1)生物传感器,并对试验条件进行了优化。优化的试验条件如下:适配体互补链与适配体的物质的量比为1.5,SGI加入量为10μL,适配体双...采用核酸适配体作为特异性识别元件,SYBR Green I(SGI)荧光染料为信号输出单元,构建了黄曲霉毒素B_1(AFB_1)生物传感器,并对试验条件进行了优化。优化的试验条件如下:适配体互补链与适配体的物质的量比为1.5,SGI加入量为10μL,适配体双链与SGI的作用时间为2 min,适配体与AFB_1作用时间为14 min。结果表明,在AFB_1质量浓度为0.1~1 000μg·L^(-1)时,荧光强度变化量与其质量浓度对数呈线性关系,检出限(3S/N)为0.081μg·L^(-1)。对实际玉米样品进行加标回收试验,回收率为95.2%~105%,测定值的相对标准偏差(n=7)均小于6.0%。与其他适配体传感器进行比较,该方法所构建的荧光适配体传感器对AFB_1的检测具有操作简便、检测范围宽、灵敏度高、特异性强、成本低廉等优点,适合现场快速测定。展开更多
Small nucleic acid drugs,composed of nucleotides,represent a novel class of pharmaceuticals that differ significantly from conventional small molecule and antibody-based therapeutics.These agents function by selective...Small nucleic acid drugs,composed of nucleotides,represent a novel class of pharmaceuticals that differ significantly from conventional small molecule and antibody-based therapeutics.These agents function by selectively targeting specific genes or their corresponding messenger RNAs(mRNAs),further modulating gene expression and regulating translation-related processes.Prominent examples within this category include antisense oligonucleotides(ASO),small interfering RNAs(siRNAs),micro-RNAs(miRNAs),and aptamers.The emergence of small nucleic acid drugs as a focal point in contemporary biopharmaceutical research is attributed to their remarkable specificity,facile design,abbreviated development cycles,expansive target spectrum,and prolonged activity.Overcoming challenges such as poor stability,immunogenicity,and permeability issues have been addressed through the integration of chemical modifications and the development of drug delivery systems.This review provides an overview of the current status and prospective trends in small nucleic acid drug development.Commencing with a historical context,we introduce the primary classifications and mechanisms of small nucleic acid drugs.Subsequently,we delve into the advantages of the U.S.Food and Drug Administration(FDA)approved drugs and mainly discuss the challenges encountered during their development.Apart from researching chemical modification and delivery system that efficiently deliver and enrich small nucleic acid drugs to target tissues,promoting endosomal escape is a critical scientific question and important research direction in siRNA drug development.Future directions in this field will prioritize addressing these challenges to facilitate the clinical transformation of small nucleic acid drugs.展开更多
文摘Staphylococcus aureus is a gram-staining positive cocci bacillus baterium and also one of the foodborne pathogens, which is a serious potential hazard to human health and food safety. We constructed an electrochemical biosensor for the detection of S. aureus based on nucleic acid aptamers to achieve highly specific detection of S. aureus. The detection of S. aureus was realized by using Aptamer (Apt) to capture S. aureus, which resulted in a change in the spatial conformation of Apt and a decrease in the electrochemical signal. Under the optimized experimental conditions, the detected electrochemical signals were positively correlated with the concentration of S. aureus with a linear range of 1 × 10<sup>1</sup> - 1 × 10<sup>5</sup> CFU/mL, a detection limit of 4.76 CFU/mL, and an experimental recovery of 97.43% - 99.37%. Therefore, we successfully constructed an electrochemical biosensor for the specific detection of S. aureus, which has the advantages of high specificity, sensitive detection and convenient operation.
文摘Lymphomas are cancers that arise from white blood cells and usually present as solid tumors. Treatment of lymphoma often involves chemotherapy, and can also include radiotherapy and/or bone marrow transplantation. There is an unquestioned need for more effective therapies and diagnostic tool for lymphoma. Aptamers are single stranded DNA or RNA oligonucleotides whose three-dimensional structures are dictated by their sequences. The immense diversity in function and structure of nucleic acids enable numerous aptamers to be generated through an iterative in vitro selection technique known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Aptamers have several biochemical properties that make them attractive tools for use as potential diagnostic and pharmacologic agents. Isolated aptamers may directly inhibit the function of target proteins, or they can also be formulated for use as delivery agents for other therapeutic or imaging cargoes. More complex aptamer identification methods, using whole cancer cells (Cell-SELEX), may identify novel targets and aptamers to affect them. This review focuses on recent advances in the use of nucleic acid aptamers as diagnostic and therapeutic agents and as targeted delivery carriers that are relevant to lymphoma. Some representative examples are also discussed.
文摘Peptide nucleic acids (PNAs) are synthetic oligonucleotides with chemically modified backbones. PNAs can bind to both DNA and RNA targets in a sequence-specific manner to form PNA/DNA and PNA/RNA duplex structures. When bound to double-stranded DNA (dsDNA) targets, the PNA molecule replaces one DNA strand in the duplex by strand invasion to form a PNA/DNA/PNA [or (PNA)2/DNA] triplex structure and the displaced DNA strand exists as a singlestranded D-loop. PNA has been used in many studies as research tools for gene regulation and gene targeting. The Dloops generated from the PNA binding have also been demonstrated for its potential in initiating transcription and inducing gene expression. PNA provides a powerful tool to study the mechanism of transcription and an innovative strategy to regulate target gene expression. An understanding of the PNA-mediated gene regulation will have important clinical implications in treatment of many human diseases including genetic, cancerous, and age-related diseases.
基金Supported by National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning No.2012M3A9B6055200,No.2013R1A2A2A01004649
文摘In this review,we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus(HCV)infection.Because the HCV genome is present exclusively in RNA form during replication,various nucleic acid-based therapeutic approaches targeting the HCV genome,such as ribozymes,aptamers,siRNAs,and antisense oligonucleotides,have been suggested as potential tools against HCV.Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics.These limitations have hampered the clinical development of nucleic acid-based therapeutics.However,despite these limitations,nucleic acid-based therapeutics has clinical value due to their great specificity,easy and large-scale synthesis with chemical methods,and pharmaceutical flexibility.Moreover,nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle,and therefore they may prove to be more effective than existing therapeutics,such as interferon-αand ribavirin combination therapy.This review focuses on the current status and future prospects of ribozymes,aptamers,siRNAs,and antisense oligonucleotides as therapeutic reagents against HCV.
文摘Ergot alkaloids are mycotoxins which can be found in food based on cereal-crops, due to a contamination of plants by fungi of the genus Claviceps. The ingestion of ergot contaminated cereal crops can lead to a severe poisoning known as ergotism. For food and feed safety purposes, the extraction of ergot alkaloids from ergot contaminated flour was investigated. For the specific recognition of ergot alkaloids, DNA aptamer ligands specially selected for ergot alkaloids were grafted onto silica gel in order to construct a specific solid phase extraction system. The aptamer-functionalized silica gels were used to extract ergot alkaloids from a contaminated rye feed sample. The presence of ergot alkaloids eluted from the aptamer-functionalized silica gels was analyzed using LC-QTOF-MS. By using this simple system, it was possible to specifically extract ergosine, ergokryptine and ergocornine from an ergot contaminated rye feed sample. This aptamer-based extraction tool shows the applicability of aptamers for the specific extraction of toxins or natural compounds from turbid matrices in a one-step procedure.
基金the National Natural Science Foundation of China(NSFC,No.82272797)the National Natural Science Foundation of China(NSFC,No.82304564)Shenyang Young and Middle-aged Scientific and Technological Innovation Talents Support Project(No.RC220508,China).
文摘Small nucleic acid drugs,composed of nucleotides,represent a novel class of pharmaceuticals that differ significantly from conventional small molecule and antibody-based therapeutics.These agents function by selectively targeting specific genes or their corresponding messenger RNAs(mRNAs),further modulating gene expression and regulating translation-related processes.Prominent examples within this category include antisense oligonucleotides(ASO),small interfering RNAs(siRNAs),micro-RNAs(miRNAs),and aptamers.The emergence of small nucleic acid drugs as a focal point in contemporary biopharmaceutical research is attributed to their remarkable specificity,facile design,abbreviated development cycles,expansive target spectrum,and prolonged activity.Overcoming challenges such as poor stability,immunogenicity,and permeability issues have been addressed through the integration of chemical modifications and the development of drug delivery systems.This review provides an overview of the current status and prospective trends in small nucleic acid drug development.Commencing with a historical context,we introduce the primary classifications and mechanisms of small nucleic acid drugs.Subsequently,we delve into the advantages of the U.S.Food and Drug Administration(FDA)approved drugs and mainly discuss the challenges encountered during their development.Apart from researching chemical modification and delivery system that efficiently deliver and enrich small nucleic acid drugs to target tissues,promoting endosomal escape is a critical scientific question and important research direction in siRNA drug development.Future directions in this field will prioritize addressing these challenges to facilitate the clinical transformation of small nucleic acid drugs.