Recently measured thermal conductivity in single-walled carbon nanotube ropes in the temperature range 8 - 350 K has been explained using an anisotropic dynamical model which not only takes into account the quasi two-...Recently measured thermal conductivity in single-walled carbon nanotube ropes in the temperature range 8 - 350 K has been explained using an anisotropic dynamical model which not only takes into account the quasi two-dimensional nature of the folded graphene sheets that forms the nanotubes, but also the intertube coupling, in addition to the phonon frequency and dimensionality dependent relaxation time of phonon-phonon scattering and interaction.展开更多
Abstract The carbon-carbon bond between two nearest-neighboring atoms is mod- eled as a beam and the single-walled carbon nanotubes are treated as the space frame structures in order to analyze the mechanical properti...Abstract The carbon-carbon bond between two nearest-neighboring atoms is mod- eled as a beam and the single-walled carbon nanotubes are treated as the space frame structures in order to analyze the mechanical properties of carbon nanotubes. Based on the theory of Tersof- Brenner force feld, the energy relationships between the carbon-carbon bond and the beam model are obtained, and the stifness parameters of the beam are determined. By applying the present model, the Young’s moduli of the single-walled carbon nanotubes with diferent tube diameters are determined. And the present results are compared with available data.展开更多
Microwave dielectric measurements over the broad bandwith of 10 MHz to 20 GHz were conducted on composites comprising bundles of single-walled carbon nanotubes (SWNT) embedded in an epoxy matrix, in comparison to th...Microwave dielectric measurements over the broad bandwith of 10 MHz to 20 GHz were conducted on composites comprising bundles of single-walled carbon nanotubes (SWNT) embedded in an epoxy matrix, in comparison to the nano-graphite and MWNT. It is found that both relative real and imaginary permittivity of the nanocomposites are strong functions of the SWNT concentration, showing large, wide dielectric and electrical response. Distinct resonance around 1.5 GHz is observed at high SWNT concentrations, accompa- nied by the downshift of the resonance frequency with increasing concentration. Largely, the SWNT-epoxy composites share the behavior of the MWNT owing to structural similarity, much more effective than the nano-graphite. The remarkable, broadband dielectric and electrical properties of the nanotubes acquired in the work originate from their unique seamless graphene architectures, modeled by two major contributions, dielectric relaxation/resonance and electronic conduction, which is substantiated by the agreement between theoretical analysis and experimental results. The carbon nanotube composites are prospective for microwave applications and offer experimental evidence for fundamental studies in low-dimensional systems.展开更多
In this work, the thermal properties of a single-walled carbon nanotube (SWCNT) crystal are studied. The thermal conductivity of the SWCNT crystal is found to have a linear dependence on temperature in the temperatu...In this work, the thermal properties of a single-walled carbon nanotube (SWCNT) crystal are studied. The thermal conductivity of the SWCNT crystal is found to have a linear dependence on temperature in the temperature range from 1.9 K to 100.0 K. In addition, a peak (658 W/mK) is found at a temperature of about 100.0 K. The thermal conductivity decreases gradually to a value of 480 W/mK and keeps almost a constant in the temperature range from 100.0 K to 300.0 K. Meanwhile, the specific heat shows an obvious linear relationship with temperature in the temperature range from 1.9 K to 300.0 K. We discuss the possible mechanisms for these unique thermal properties of the single-walled carbon nanotube crystal.展开更多
The analytical expression of the electronic density of states (DOS) for single-walled carbon nanotubes (SWNTs) has been derived on the basis of graphene approximation of the energy E(k) near the Fermi level EF. The di...The analytical expression of the electronic density of states (DOS) for single-walled carbon nanotubes (SWNTs) has been derived on the basis of graphene approximation of the energy E(k) near the Fermi level EF. The distinctive properties of the DOS, the normalized differential conductivity and the current us bias for SWNTs are deduced and analyzed theoretically. The singularities in the DOS (or in the normalized differential conductivity) predict that the jump structure of current (or conductance)-bias of SWNTs exists. All conclusions from the theoretical analysis are in well agreement with the experimental results of SWNT's electronic structure and electronic transport. In other words, the simple theoretical model in this paper can be applied to understand a range of spectroscopic and other measurement data related to the DOS of SWNTs.展开更多
Functionalized carbon nanotubes (CNTs) were made for the delivery of genes and drugs and CNT-based biosensors. The basis of CNTs is for binding with biomolecules in biomedical applications. The binding tendency with...Functionalized carbon nanotubes (CNTs) were made for the delivery of genes and drugs and CNT-based biosensors. The basis of CNTs is for binding with biomolecules in biomedical applications. The binding tendency with small interfering RNA oligonucleotides and cytotoxicity of cetyltrimethyl ammonium bromide (CTAB)-coated single-walled carbon nanotubes (SWNTs) were studied. The field emission scanning electron microscopy and transmission electron microscopy results show that a SWNT suspension in CTAB solution was well-dispersed and stable. CTAB is the cross-linker between SWNTs and oligonucleotides. The CTAB-coated SWNTs have less cytotoxicity to human umbilical vein endothelial cells than single SWNTs and the cytotoxicity of CTAB-coated SWNTs depended on the concentration of CTAB-coated SWNTs.展开更多
An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition. Electrochemical properties of the el...An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition. Electrochemical properties of the electrodes were investigated. In comparison with the post-deposited SWCNT papers, the directly grown SWCNT film electrodes manifested enhanced electrochemical properties and sensitivity of sensors as well as excellent electrocatalytic activities. A transition from macroelectrode to nanoelectrode behaviours was observed with the increase of scan rate. The heat treatment of the SWCNT film electrodes increased the current signals of electrochemical analyser and background current, because the heat-treatment of the SWCNTs in air could create more oxide defects on the walls of the SWCNTs and make the surfaces of SWCNTs more hydrophilic. The excellent electrochemical properties of the directly grown and heat-treated free-standing SWCNT film electrodes show the potentials in biological and electrocatalytic applications.展开更多
This paper systematically studies the rolling effects of the (n, n) single-wall carbon nanotubes (SWCNT) with different curvatures on Rh adsorption behaviours by using density functional theory. The outside charge...This paper systematically studies the rolling effects of the (n, n) single-wall carbon nanotubes (SWCNT) with different curvatures on Rh adsorption behaviours by using density functional theory. The outside charge densities of SWCNTs are found to be higher than those inside, and the differences decrease with the increase of the tube radius. This electronic property led to the discovery that the outside adsorption energies are higher than the inside ones, and that the differences are reduced with the increase of the tube radius. Partial density of states and charge density difference indicate that these strong interactions induce electron transfer between Rh atoms and SWCNTs.展开更多
Tensile deformation behaviors and the Poisson's ratio of single-walled carbon nanotubes (SWCNTs) are numerically studied, using the molecular dynamics (MD) inethod. Effects of several structural features of cryst...Tensile deformation behaviors and the Poisson's ratio of single-walled carbon nanotubes (SWCNTs) are numerically studied, using the molecular dynamics (MD) inethod. Effects of several structural features of crystal cells of SWCNTs, i.e., the size, chirality and strain, on their mechanical properties are analyzed systematically. The simulations indicate that Armchair SWCNTs (8, 8)-(22, 22) and Zigzag SWCNTs (9,0)- (29,0) can be stretched by 35%-38% and 20%-27% without sign of plasticity, respectively. The Young's modulus of SWCNTs under tension ranges from 960 GPa to 750 GPa as their radii increase. The Young's modulus of zigzag SWCNTs is higher than that of armchair SWCNTs. Additionally, three SWCNTs (9,9), (12,6) and (16,0) are investigated to obtain their Poisson's ratio under tensile and compressive loading. The results show that the Poisson's ratio of nanotubes decreases generally as the strain increases. Under the same tensile strain, the Poisson's ratio decreases as the chiral angles of SWCNTs decrease, while their Polsson's ratios increase under the same compressive strain.展开更多
A new biosensor platform was explored for detection of surfactant based on fluorescence changes from single strand DNA (ssDNA) and single-walled carbon nanotubes (SWNTs). Thermodynamics assay was performed to valu...A new biosensor platform was explored for detection of surfactant based on fluorescence changes from single strand DNA (ssDNA) and single-walled carbon nanotubes (SWNTs). Thermodynamics assay was performed to value the stability of probe. The affinities of SWNT to five common surfactants (SDS, DBS, Triton X-100, Tween-20 and Tween-80) were investigated by real-time fluorescence method. The effects of Mg^2+ and pH on the fluorescence intensity of self-assembled quenched sensor were performed. The fluorescent emission spectra were used to measure the responses of self-assembled quenched fluorescent of ssDNA/SWNTs to different concentration surfactant(Triton X-100). The FAM-DNA wrapped SWNTs probe was stable in a wide temperature range (5 ℃ to 80℃). The binding strength of surfactants and single-stranded DNA (ssDNA) on SWNTs surfaces was shown as follows: Triton X-100〉DBS〉Tween-20〉Tween-80〉ssDNA〉SDS, and the optimized reaction conditions included pH 7.4 and 10 mmol/L Mg2+. The fluorescence of FAM-ssDNA wrapped SWNTs was proportionally recovered as a result of adding different concentrations of Triton X- 100, which realizes the quantitative detection of Triton X- 100.展开更多
Carbon nanotubes(CNTs) have shown as unique nanoreactors to tune the catalytic activity of confined nano-catalysts. Here we report that the catalytic performance of molybdenum carbide nanoparticles(MoC_x NPs) for the ...Carbon nanotubes(CNTs) have shown as unique nanoreactors to tune the catalytic activity of confined nano-catalysts. Here we report that the catalytic performance of molybdenum carbide nanoparticles(MoC_x NPs) for the hydrogen evolution reaction(HER) process can be enhanced by encapsulation within single-walled carbon nanotubes(SWNTs) with a diameter of 1–2 nm. The catalyst with MoC_x NPs located on the interior surface of SWNTs(MoCx@SWNTs) exhibits a lower onset over-potential and a smaller Tafel slope than the one with MoC_x NPs attached on the exterior surface(MoCx/SWNTs). This is likely attributed to the much smaller particle size and the more reduced states of the confined MoC_x NPs, as well as the larger specific surface area of MoCx@SWNTs compared with Mo Cx/SWNTs. In addition, the electronic structure of the confined MoC_x NPs might be modified by the confinement effects of SWNTs, and hence the adsorption free energy of H atoms on the confined MoC_x NPs, which could also contribute to their higher performance. These results suggest that the SWNTs can be further explored for constructing novel catalysts with beneficial catalytic performance.展开更多
Ultrathin,lightweight,and flexible aligned single-walled carbon nanotube(SWCNT)films are fabricated by a facile,environmentally friendly,and scalable printing methodology.The aligned pattern and outstanding intrinsic ...Ultrathin,lightweight,and flexible aligned single-walled carbon nanotube(SWCNT)films are fabricated by a facile,environmentally friendly,and scalable printing methodology.The aligned pattern and outstanding intrinsic properties render“metal-like”thermal conductivity of the SWCNT films,as well as excellent mechanical strength,flexibility,and hydrophobicity.Further,the aligned cellular microstructure promotes the electromagnetic interference(EMI)shielding ability of the SWCNTs,leading to excellent shielding effectiveness(SE)of~39 to 90 dB despite a density of only~0.6 g cm^(−3) at thicknesses of merely 1.5-24μm,respectively.An ultrahigh thickness-specific SE of 25693 dB mm^(−1) and an unprecedented normalized specific SE of 428222 dB cm^(2)g^(−1) are accomplished by the freestanding SWCNT films,significantly surpassing previously reported shielding materials.In addition to an EMI SE greater than 54 dB in an ultra-broadband frequency range of around 400 GHz,the films demonstrate excellent EMI shielding stability and reliability when subjected to mechanical deformation,chemical(acid/alkali/organic solvent)corrosion,and high-/low-temperature environments.The novel printed SWCNT films offer significant potential for practical applications in the aerospace,defense,precision components,and smart wearable electronics industries.展开更多
Single-walled carbon nanotubes(SWNTs) have a high adsorption ability and nanoscale interactions. Cellulose trisphenylcarbamates possess high enantioseparation ability in high-performance liquid chromatography(HPLC...Single-walled carbon nanotubes(SWNTs) have a high adsorption ability and nanoscale interactions. Cellulose trisphenylcarbamates possess high enantioseparation ability in high-performance liquid chromatography(HPLC). Single-walled carbon nanotubes mixed with cellulose trisphenylcarbamate are coated on the silica gel as chiral stationary phases and higher enantioseparation factors are obtained. After a single-walled carbon nanotube is linked to the 6-pesition of cellulose 2,3-bisphenylcarbamate, its enantioseparation resolution increases compared to that of the cellulose trisphenylcarbamate. It is the first time that SWNTs have been applied to enantioseparation. The results indicate that the single-walled carbon nanotubes are good promoters of chiral recognition. This method can be used to improve the enantioseparation efficiency of the polysaccharide chiral stationary phases.展开更多
An approach was presented for synthesis of semiconducting single-walled carbon nanotubes(SWNTs) by sulfur(S) doping with the method of graphite arc discharge. Raman spectroscopy, UV-vis-NIR absorption spectroscopy and...An approach was presented for synthesis of semiconducting single-walled carbon nanotubes(SWNTs) by sulfur(S) doping with the method of graphite arc discharge. Raman spectroscopy, UV-vis-NIR absorption spectroscopy and electronic properties measurements indicated the semconducting properties of the SWNTs samples. Simulant calculation indicated that S doping could induce convertion of metallic SWNTs into semiconducting ones. This strategy may pave a way for the direct synthesis of pure semiconducting SWNTs.展开更多
In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes(SWNTs)have been investigated.In both reactors,single-walled carbon nanotubes were grown by catal...In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes(SWNTs)have been investigated.In both reactors,single-walled carbon nanotubes were grown by catalytic chemical vapor decomposition(CCVD)of methane over Co-Mo/MgO nanocatalyst under two different operating conditions.The synthesized samples were characterized by TEM,TGA and Raman spectroscopy.It is found that the performance of a fluidized bed in the synthesis of carbon nanotubes is much better than that of a fixed bed.The quality of carbon nanotubes obtained from the fluidized bed was significantly higher than that from the fixed bed and the former one with the ID/IG ratio of 0.11 while the latter one with the ID/IG ratio of 0.71.Also,the yield of SWNTs in the fluidized bed was 92 wt%,while it was 78 wt%in the fixed bed.These advantages of fluidized bed reactors for the synthesis of carbon nanotubes can be attributed to more available space for the growth of carbon nanotubes and more uniform temperature and concentration profiles.展开更多
A novel burning technique for making a semiconducting single-walled carbon nanotubes (SWNTs) transistor assembled by the dielectrophoretic force was suggested. The fabrication process consisted of two steps. First, ...A novel burning technique for making a semiconducting single-walled carbon nanotubes (SWNTs) transistor assembled by the dielectrophoretic force was suggested. The fabrication process consisted of two steps. First, to align and attach a bundle of SWNTs between the source and drain, the alternating (AC) voltage was applied to the electrodes. When a bundle of SWNTs was connected between two electrodes, some of metallic nanotubes and semi-conducing nanotubes existed together. The second step is to burn the metallic SWNTS by applying the voltage between two electrodes. With increasing the voltage, more current flowed through the metallic SWNTs, thus, the metallic SWNTs burnt earlier than the semiconducting one. This technique enables to obtain only semi-conducting SWNTs connection in the transistor. Through the 1--V characteristic graph, the moment of metallic SWNTs burning and the characteristic of semi-conducing nanotubes were verified.展开更多
As a preliminary investigation towards obtaining carbon nanotube composite adsorbent for CO2 capture, in this study CO2 adsorption performance of three commercial carbon nanotubes (CNTs) one single-walled carbon nan...As a preliminary investigation towards obtaining carbon nanotube composite adsorbent for CO2 capture, in this study CO2 adsorption performance of three commercial carbon nanotubes (CNTs) one single-walled carbon nanotubes (SWCNTs), and two (2) different multi-walled carbon nanotubes (referred to as A-MWCNTs and B-MWCNTs) were evaluated and compared. The purpose of this study was to compare the different types of CNTs and select the best to serve as the solid anchor in the development of a hydrophobic composite adsorbent material for CO2 capture. The N2 physi- sorption of the CNTs was conducted to determine their surface area, pore volume and pore size. In addition, morphology and purity of the CNTs were checked with Transmission Electron Microscopy and Raman Spectroscopy, respectively. The CO2 adsorption capacity of the CNTs was evaluated using Thermo-gravimetric analysis (TGA) at 1.1 bar, at operating temperature ranged from 25 to 55 ~C and at different CO2 feed flow rates, in order to evaluate the effects of these variables on the CO2 adsorption capacity. The results of CO2 adsorption with the TGA show that CO2 adsorption capacity for both SWCNTs and MWCNTs was the highest at 25 ~C. Changing the CO2 flowrates had no significant effect on the adsorption capacity of MWCNTs, but decreasing the CO2 flow rate resulted in the enhancement of the CO2 adsorption capacity of SWCNTs. Overall, it was found that the SWCNTs displayed the highest CO2 adsorption capacity (29.97 gCO2/kg ad- sorbent) when compared to the MWCNTs (12.09 gCO2/kg adsorbent), indicating a 150% increase in adsorption capacity over MWCNTs.展开更多
The adsorption of hydrogen onto single-walled carbon nanotubes (SWCNTs) was studied by molecular dynamics (MD) sim'lation. It was found that the hydrogen molecules distribute regularly inside and outside of the tu...The adsorption of hydrogen onto single-walled carbon nanotubes (SWCNTs) was studied by molecular dynamics (MD) sim'lation. It was found that the hydrogen molecules distribute regularly inside and outside of the tube. Density distribution was computed for H2 molecule. Theoretical analysis of the result showed the multilayer adsorption mechanism of SWCNTs. The storage of H2 in SWCNTs is computed, which provides essential theoretical reference for further study of hydrogen adsorption in SWCNTs.展开更多
Nitrogen-doped single-walled carbon nanotubes (CNx-SWNTs) with tunable dopant concentrations were synthesized by chemical vapor deposition (CVD), and their structure and elemental composition were characterized by...Nitrogen-doped single-walled carbon nanotubes (CNx-SWNTs) with tunable dopant concentrations were synthesized by chemical vapor deposition (CVD), and their structure and elemental composition were characterized by using transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS). By comparing the Raman spectra of pristine and doped nanotubes, we observed the doping-induced Raman G band phonon stiffening and 2D band phonon softening, both of which reflect doping-induced renormalization of the electron and phonon energies in the nan- otubes and behave as expected in accord with the n-type doping effect. On the basis of first principles calculations of the distribution of delocalized carrier density in both the pristine and doped nanotubes, we show how the n-type doping occurs when nitrogen heteroatoms are substitutionally incorporated into the honeycomb tube-shell carbon lattice.展开更多
In order to explore a novel and potential method using carbon nanotubes (CNTs) for controlling blue-green algal blooms efficiently in future, effects of single-walled carbon nanotubes (SWCNTs) on Microcystis aerug...In order to explore a novel and potential method using carbon nanotubes (CNTs) for controlling blue-green algal blooms efficiently in future, effects of single-walled carbon nanotubes (SWCNTs) on Microcystis aeruginosa growth control were investigated under lab cultured conditions. Related physiological changes were tested involving several important enzyme of antioxidant defense system (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), malondiadehyde (MDA), photosynthetic pigments, protein, soluble sugar and extracellular microcystin toxins (MC-LR)). Algal cell density was significantly inhibited by SWCNTs at high concentration (〉5.00 mg/L), and the inhibition rate was dose-dependent. For treatment with 100 mg/L SWCNTs, the inhibitory rates even reached above 90%. 96 h IC50 was determined as 22 mg/L. Antioxidant enzyme activities were dramatically dropped with increasing lipid peroxidation at higher SWCNTs concentration, indicating intracellular generation of reactive oxygen species (ROS) and oxidative stress damage in algae. Reduction of photosynthetic pigments, soluble sugar and protein contents suggested that SWCNTs may severely ruin algal photosynthesis system, destroy the metabolism-related structure of cell, and thus lead to negative physiological status in M. aeruginosa. Besides, SWCNTs can effectively decrease the amount of extracellular microcystins in culture medium.展开更多
文摘Recently measured thermal conductivity in single-walled carbon nanotube ropes in the temperature range 8 - 350 K has been explained using an anisotropic dynamical model which not only takes into account the quasi two-dimensional nature of the folded graphene sheets that forms the nanotubes, but also the intertube coupling, in addition to the phonon frequency and dimensionality dependent relaxation time of phonon-phonon scattering and interaction.
文摘Abstract The carbon-carbon bond between two nearest-neighboring atoms is mod- eled as a beam and the single-walled carbon nanotubes are treated as the space frame structures in order to analyze the mechanical properties of carbon nanotubes. Based on the theory of Tersof- Brenner force feld, the energy relationships between the carbon-carbon bond and the beam model are obtained, and the stifness parameters of the beam are determined. By applying the present model, the Young’s moduli of the single-walled carbon nanotubes with diferent tube diameters are determined. And the present results are compared with available data.
文摘Microwave dielectric measurements over the broad bandwith of 10 MHz to 20 GHz were conducted on composites comprising bundles of single-walled carbon nanotubes (SWNT) embedded in an epoxy matrix, in comparison to the nano-graphite and MWNT. It is found that both relative real and imaginary permittivity of the nanocomposites are strong functions of the SWNT concentration, showing large, wide dielectric and electrical response. Distinct resonance around 1.5 GHz is observed at high SWNT concentrations, accompa- nied by the downshift of the resonance frequency with increasing concentration. Largely, the SWNT-epoxy composites share the behavior of the MWNT owing to structural similarity, much more effective than the nano-graphite. The remarkable, broadband dielectric and electrical properties of the nanotubes acquired in the work originate from their unique seamless graphene architectures, modeled by two major contributions, dielectric relaxation/resonance and electronic conduction, which is substantiated by the agreement between theoretical analysis and experimental results. The carbon nanotube composites are prospective for microwave applications and offer experimental evidence for fundamental studies in low-dimensional systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.50702015,10574034,and 10774032)
文摘In this work, the thermal properties of a single-walled carbon nanotube (SWCNT) crystal are studied. The thermal conductivity of the SWCNT crystal is found to have a linear dependence on temperature in the temperature range from 1.9 K to 100.0 K. In addition, a peak (658 W/mK) is found at a temperature of about 100.0 K. The thermal conductivity decreases gradually to a value of 480 W/mK and keeps almost a constant in the temperature range from 100.0 K to 300.0 K. Meanwhile, the specific heat shows an obvious linear relationship with temperature in the temperature range from 1.9 K to 300.0 K. We discuss the possible mechanisms for these unique thermal properties of the single-walled carbon nanotube crystal.
基金The work is financially supported by the National Natural Science Foundation of China (No.59972031)and the Scientific Research Fund of Hunan Provincial Education Department (No.01C248). Authors wish to express their sincere appreciation to these sponsors
文摘The analytical expression of the electronic density of states (DOS) for single-walled carbon nanotubes (SWNTs) has been derived on the basis of graphene approximation of the energy E(k) near the Fermi level EF. The distinctive properties of the DOS, the normalized differential conductivity and the current us bias for SWNTs are deduced and analyzed theoretically. The singularities in the DOS (or in the normalized differential conductivity) predict that the jump structure of current (or conductance)-bias of SWNTs exists. All conclusions from the theoretical analysis are in well agreement with the experimental results of SWNT's electronic structure and electronic transport. In other words, the simple theoretical model in this paper can be applied to understand a range of spectroscopic and other measurement data related to the DOS of SWNTs.
基金Project (30770838) supported by the National Natural Science Foundation of China Project (2008WK2003) supported by Hunan Science and Technology Foundation, China+1 种基金 Project (2010QZZD006) supported by the Key Program of Central South University Advancing Front Foundation, China Project (200806) supported by Opening Foundation of State Key Laboratory of Powder Metallurgy, Central South University, China
文摘Functionalized carbon nanotubes (CNTs) were made for the delivery of genes and drugs and CNT-based biosensors. The basis of CNTs is for binding with biomolecules in biomedical applications. The binding tendency with small interfering RNA oligonucleotides and cytotoxicity of cetyltrimethyl ammonium bromide (CTAB)-coated single-walled carbon nanotubes (SWNTs) were studied. The field emission scanning electron microscopy and transmission electron microscopy results show that a SWNT suspension in CTAB solution was well-dispersed and stable. CTAB is the cross-linker between SWNTs and oligonucleotides. The CTAB-coated SWNTs have less cytotoxicity to human umbilical vein endothelial cells than single SWNTs and the cytotoxicity of CTAB-coated SWNTs depended on the concentration of CTAB-coated SWNTs.
基金supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China (GrantNo. 2005CB623602)+1 种基金the Fund of the Beijing Municipal Education Commission (Grant No. YB20108000101)the Key Item of Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-YW-M01)
文摘An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition. Electrochemical properties of the electrodes were investigated. In comparison with the post-deposited SWCNT papers, the directly grown SWCNT film electrodes manifested enhanced electrochemical properties and sensitivity of sensors as well as excellent electrocatalytic activities. A transition from macroelectrode to nanoelectrode behaviours was observed with the increase of scan rate. The heat treatment of the SWCNT film electrodes increased the current signals of electrochemical analyser and background current, because the heat-treatment of the SWCNTs in air could create more oxide defects on the walls of the SWCNTs and make the surfaces of SWCNTs more hydrophilic. The excellent electrochemical properties of the directly grown and heat-treated free-standing SWCNT film electrodes show the potentials in biological and electrocatalytic applications.
基金supported by the National Basic Research Programs of China (Grant No.2006CB708612)
文摘This paper systematically studies the rolling effects of the (n, n) single-wall carbon nanotubes (SWCNT) with different curvatures on Rh adsorption behaviours by using density functional theory. The outside charge densities of SWCNTs are found to be higher than those inside, and the differences decrease with the increase of the tube radius. This electronic property led to the discovery that the outside adsorption energies are higher than the inside ones, and that the differences are reduced with the increase of the tube radius. Partial density of states and charge density difference indicate that these strong interactions induce electron transfer between Rh atoms and SWCNTs.
基金VII. ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (10502047) and Postdoctoral Foundation of China (No.2005038166).
文摘Tensile deformation behaviors and the Poisson's ratio of single-walled carbon nanotubes (SWCNTs) are numerically studied, using the molecular dynamics (MD) inethod. Effects of several structural features of crystal cells of SWCNTs, i.e., the size, chirality and strain, on their mechanical properties are analyzed systematically. The simulations indicate that Armchair SWCNTs (8, 8)-(22, 22) and Zigzag SWCNTs (9,0)- (29,0) can be stretched by 35%-38% and 20%-27% without sign of plasticity, respectively. The Young's modulus of SWCNTs under tension ranges from 960 GPa to 750 GPa as their radii increase. The Young's modulus of zigzag SWCNTs is higher than that of armchair SWCNTs. Additionally, three SWCNTs (9,9), (12,6) and (16,0) are investigated to obtain their Poisson's ratio under tensile and compressive loading. The results show that the Poisson's ratio of nanotubes decreases generally as the strain increases. Under the same tensile strain, the Poisson's ratio decreases as the chiral angles of SWCNTs decrease, while their Polsson's ratios increase under the same compressive strain.
基金Projects (21075032, 21005026, 21135001) supported by the National Natural Science Foundation of ChinaProject (llJJ5012) supported by Hunan Provincial Natural Science Foundation, China
文摘A new biosensor platform was explored for detection of surfactant based on fluorescence changes from single strand DNA (ssDNA) and single-walled carbon nanotubes (SWNTs). Thermodynamics assay was performed to value the stability of probe. The affinities of SWNT to five common surfactants (SDS, DBS, Triton X-100, Tween-20 and Tween-80) were investigated by real-time fluorescence method. The effects of Mg^2+ and pH on the fluorescence intensity of self-assembled quenched sensor were performed. The fluorescent emission spectra were used to measure the responses of self-assembled quenched fluorescent of ssDNA/SWNTs to different concentration surfactant(Triton X-100). The FAM-DNA wrapped SWNTs probe was stable in a wide temperature range (5 ℃ to 80℃). The binding strength of surfactants and single-stranded DNA (ssDNA) on SWNTs surfaces was shown as follows: Triton X-100〉DBS〉Tween-20〉Tween-80〉ssDNA〉SDS, and the optimized reaction conditions included pH 7.4 and 10 mmol/L Mg2+. The fluorescence of FAM-ssDNA wrapped SWNTs was proportionally recovered as a result of adding different concentrations of Triton X- 100, which realizes the quantitative detection of Triton X- 100.
基金financially supported by the National Natural Science Foundation of China (No. 21425312, 21688102, 21621063, and 21573224)
文摘Carbon nanotubes(CNTs) have shown as unique nanoreactors to tune the catalytic activity of confined nano-catalysts. Here we report that the catalytic performance of molybdenum carbide nanoparticles(MoC_x NPs) for the hydrogen evolution reaction(HER) process can be enhanced by encapsulation within single-walled carbon nanotubes(SWNTs) with a diameter of 1–2 nm. The catalyst with MoC_x NPs located on the interior surface of SWNTs(MoCx@SWNTs) exhibits a lower onset over-potential and a smaller Tafel slope than the one with MoC_x NPs attached on the exterior surface(MoCx/SWNTs). This is likely attributed to the much smaller particle size and the more reduced states of the confined MoC_x NPs, as well as the larger specific surface area of MoCx@SWNTs compared with Mo Cx/SWNTs. In addition, the electronic structure of the confined MoC_x NPs might be modified by the confinement effects of SWNTs, and hence the adsorption free energy of H atoms on the confined MoC_x NPs, which could also contribute to their higher performance. These results suggest that the SWNTs can be further explored for constructing novel catalysts with beneficial catalytic performance.
基金support of National Key R&D Program of China (2021YFB3502500)Provincial Key Research and Development Program of Shandong (2019JZZY010312, 2021ZLGX01)+4 种基金Natural Science Foundation of Shandong Province (2022HYYQ-014)New 20 Funded Programs for Universities of Jinan (2021GXRC036)Qilu Young Scholar Program of Shandong University (31370082163127)the assistance of Shandong University Testing and Manufacturing Center for Advanced Materialssupport from the National Science Foundation Engineering Research Center for Power Optimization of Electro Thermal Systems (POETS) under Grant No. EEC 1449548.
文摘Ultrathin,lightweight,and flexible aligned single-walled carbon nanotube(SWCNT)films are fabricated by a facile,environmentally friendly,and scalable printing methodology.The aligned pattern and outstanding intrinsic properties render“metal-like”thermal conductivity of the SWCNT films,as well as excellent mechanical strength,flexibility,and hydrophobicity.Further,the aligned cellular microstructure promotes the electromagnetic interference(EMI)shielding ability of the SWCNTs,leading to excellent shielding effectiveness(SE)of~39 to 90 dB despite a density of only~0.6 g cm^(−3) at thicknesses of merely 1.5-24μm,respectively.An ultrahigh thickness-specific SE of 25693 dB mm^(−1) and an unprecedented normalized specific SE of 428222 dB cm^(2)g^(−1) are accomplished by the freestanding SWCNT films,significantly surpassing previously reported shielding materials.In addition to an EMI SE greater than 54 dB in an ultra-broadband frequency range of around 400 GHz,the films demonstrate excellent EMI shielding stability and reliability when subjected to mechanical deformation,chemical(acid/alkali/organic solvent)corrosion,and high-/low-temperature environments.The novel printed SWCNT films offer significant potential for practical applications in the aerospace,defense,precision components,and smart wearable electronics industries.
基金Supported by the National Natural Science Foundation of China(No.30160092)the Natural Science Foundation of Yunnan Province,China(No.2005E0006Z).
文摘Single-walled carbon nanotubes(SWNTs) have a high adsorption ability and nanoscale interactions. Cellulose trisphenylcarbamates possess high enantioseparation ability in high-performance liquid chromatography(HPLC). Single-walled carbon nanotubes mixed with cellulose trisphenylcarbamate are coated on the silica gel as chiral stationary phases and higher enantioseparation factors are obtained. After a single-walled carbon nanotube is linked to the 6-pesition of cellulose 2,3-bisphenylcarbamate, its enantioseparation resolution increases compared to that of the cellulose trisphenylcarbamate. It is the first time that SWNTs have been applied to enantioseparation. The results indicate that the single-walled carbon nanotubes are good promoters of chiral recognition. This method can be used to improve the enantioseparation efficiency of the polysaccharide chiral stationary phases.
基金supported by National Natural Science Foundation of China No.50730008Shanghai Science and Technology Grant No.0752nm015National Basic Research Program of China No.2006CB300406
文摘An approach was presented for synthesis of semiconducting single-walled carbon nanotubes(SWNTs) by sulfur(S) doping with the method of graphite arc discharge. Raman spectroscopy, UV-vis-NIR absorption spectroscopy and electronic properties measurements indicated the semconducting properties of the SWNTs samples. Simulant calculation indicated that S doping could induce convertion of metallic SWNTs into semiconducting ones. This strategy may pave a way for the direct synthesis of pure semiconducting SWNTs.
文摘In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes(SWNTs)have been investigated.In both reactors,single-walled carbon nanotubes were grown by catalytic chemical vapor decomposition(CCVD)of methane over Co-Mo/MgO nanocatalyst under two different operating conditions.The synthesized samples were characterized by TEM,TGA and Raman spectroscopy.It is found that the performance of a fluidized bed in the synthesis of carbon nanotubes is much better than that of a fixed bed.The quality of carbon nanotubes obtained from the fluidized bed was significantly higher than that from the fixed bed and the former one with the ID/IG ratio of 0.11 while the latter one with the ID/IG ratio of 0.71.Also,the yield of SWNTs in the fluidized bed was 92 wt%,while it was 78 wt%in the fixed bed.These advantages of fluidized bed reactors for the synthesis of carbon nanotubes can be attributed to more available space for the growth of carbon nanotubes and more uniform temperature and concentration profiles.
基金Project (2010-0008-276) supported for two years by Pusan National University Research GrantNCRC(National Core Research Center) through the National Research Foundation of Korea funded by the Ministry of Education, Science and TechnologyPusan National University Research Grant, 2009
文摘A novel burning technique for making a semiconducting single-walled carbon nanotubes (SWNTs) transistor assembled by the dielectrophoretic force was suggested. The fabrication process consisted of two steps. First, to align and attach a bundle of SWNTs between the source and drain, the alternating (AC) voltage was applied to the electrodes. When a bundle of SWNTs was connected between two electrodes, some of metallic nanotubes and semi-conducing nanotubes existed together. The second step is to burn the metallic SWNTS by applying the voltage between two electrodes. With increasing the voltage, more current flowed through the metallic SWNTs, thus, the metallic SWNTs burnt earlier than the semiconducting one. This technique enables to obtain only semi-conducting SWNTs connection in the transistor. Through the 1--V characteristic graph, the moment of metallic SWNTs burning and the characteristic of semi-conducing nanotubes were verified.
文摘As a preliminary investigation towards obtaining carbon nanotube composite adsorbent for CO2 capture, in this study CO2 adsorption performance of three commercial carbon nanotubes (CNTs) one single-walled carbon nanotubes (SWCNTs), and two (2) different multi-walled carbon nanotubes (referred to as A-MWCNTs and B-MWCNTs) were evaluated and compared. The purpose of this study was to compare the different types of CNTs and select the best to serve as the solid anchor in the development of a hydrophobic composite adsorbent material for CO2 capture. The N2 physi- sorption of the CNTs was conducted to determine their surface area, pore volume and pore size. In addition, morphology and purity of the CNTs were checked with Transmission Electron Microscopy and Raman Spectroscopy, respectively. The CO2 adsorption capacity of the CNTs was evaluated using Thermo-gravimetric analysis (TGA) at 1.1 bar, at operating temperature ranged from 25 to 55 ~C and at different CO2 feed flow rates, in order to evaluate the effects of these variables on the CO2 adsorption capacity. The results of CO2 adsorption with the TGA show that CO2 adsorption capacity for both SWCNTs and MWCNTs was the highest at 25 ~C. Changing the CO2 flowrates had no significant effect on the adsorption capacity of MWCNTs, but decreasing the CO2 flow rate resulted in the enhancement of the CO2 adsorption capacity of SWCNTs. Overall, it was found that the SWCNTs displayed the highest CO2 adsorption capacity (29.97 gCO2/kg ad- sorbent) when compared to the MWCNTs (12.09 gCO2/kg adsorbent), indicating a 150% increase in adsorption capacity over MWCNTs.
文摘The adsorption of hydrogen onto single-walled carbon nanotubes (SWCNTs) was studied by molecular dynamics (MD) sim'lation. It was found that the hydrogen molecules distribute regularly inside and outside of the tube. Density distribution was computed for H2 molecule. Theoretical analysis of the result showed the multilayer adsorption mechanism of SWCNTs. The storage of H2 in SWCNTs is computed, which provides essential theoretical reference for further study of hydrogen adsorption in SWCNTs.
基金supported by the National Natural Science Foundation of China(Grant Nos.11004230,51172273,11290161,and 11027402)the National Key Basic Research Program of China(Grant Nos.2012CB933003 and 2013CB932603)the Innovative Project of the Chinese Academy of Sciences(GrantNo.KJCX2-YW-W35)
文摘Nitrogen-doped single-walled carbon nanotubes (CNx-SWNTs) with tunable dopant concentrations were synthesized by chemical vapor deposition (CVD), and their structure and elemental composition were characterized by using transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS). By comparing the Raman spectra of pristine and doped nanotubes, we observed the doping-induced Raman G band phonon stiffening and 2D band phonon softening, both of which reflect doping-induced renormalization of the electron and phonon energies in the nan- otubes and behave as expected in accord with the n-type doping effect. On the basis of first principles calculations of the distribution of delocalized carrier density in both the pristine and doped nanotubes, we show how the n-type doping occurs when nitrogen heteroatoms are substitutionally incorporated into the honeycomb tube-shell carbon lattice.
基金Project(035703011) supported by the Scientific Research Double Support Program of SICAU,China
文摘In order to explore a novel and potential method using carbon nanotubes (CNTs) for controlling blue-green algal blooms efficiently in future, effects of single-walled carbon nanotubes (SWCNTs) on Microcystis aeruginosa growth control were investigated under lab cultured conditions. Related physiological changes were tested involving several important enzyme of antioxidant defense system (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), malondiadehyde (MDA), photosynthetic pigments, protein, soluble sugar and extracellular microcystin toxins (MC-LR)). Algal cell density was significantly inhibited by SWCNTs at high concentration (〉5.00 mg/L), and the inhibition rate was dose-dependent. For treatment with 100 mg/L SWCNTs, the inhibitory rates even reached above 90%. 96 h IC50 was determined as 22 mg/L. Antioxidant enzyme activities were dramatically dropped with increasing lipid peroxidation at higher SWCNTs concentration, indicating intracellular generation of reactive oxygen species (ROS) and oxidative stress damage in algae. Reduction of photosynthetic pigments, soluble sugar and protein contents suggested that SWCNTs may severely ruin algal photosynthesis system, destroy the metabolism-related structure of cell, and thus lead to negative physiological status in M. aeruginosa. Besides, SWCNTs can effectively decrease the amount of extracellular microcystins in culture medium.