Because the applications of single-anchor leg mooring yoke systems(SYSs)are rarely studied in the offshore industry,the design of such systems features some uncertainties.This paper investigated the effect of eccentri...Because the applications of single-anchor leg mooring yoke systems(SYSs)are rarely studied in the offshore industry,the design of such systems features some uncertainties.This paper investigated the effect of eccentricity on the wear of the topside axial bearing of a SYS.The eccentricity of the topside was verified by on-site inspection,and the axial bearing wear was found to be far more serious than the original design.The contact status between the axial bearing and flange surface was studied on the basis of the actual topside load by using nonlinear finite element analysis.Wear tests of the topside bearing under uniform and eccentric loads were also performed to study the effect of eccentric loads on the wear rate.The key parameters obtained from numerical simulations and experimentation were used to calculate the wear depth via a simplified linear wear model based on the product of the pressure and sliding distance.Results showed that eccentric loads are the main factor responsible for the excessive wear of topside axial bearings.展开更多
基金supported by the Project of China Offshore Oil Engineering Company(Tianjin)CCL2014CFD。
文摘Because the applications of single-anchor leg mooring yoke systems(SYSs)are rarely studied in the offshore industry,the design of such systems features some uncertainties.This paper investigated the effect of eccentricity on the wear of the topside axial bearing of a SYS.The eccentricity of the topside was verified by on-site inspection,and the axial bearing wear was found to be far more serious than the original design.The contact status between the axial bearing and flange surface was studied on the basis of the actual topside load by using nonlinear finite element analysis.Wear tests of the topside bearing under uniform and eccentric loads were also performed to study the effect of eccentric loads on the wear rate.The key parameters obtained from numerical simulations and experimentation were used to calculate the wear depth via a simplified linear wear model based on the product of the pressure and sliding distance.Results showed that eccentric loads are the main factor responsible for the excessive wear of topside axial bearings.