Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding ...Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding the pathogenesis of diabetic wounds,the underlying mechanisms remain unclear.The advent of single-cell RNA sequencing(scRNAseq)has revolutionised biological research by enabling the identification of novel cell types,the discovery of cellular markers,the analysis of gene expression patterns and the prediction of develop-mental trajectories.This powerful tool allows for an in-depth exploration of pathogenesis at the cellular and molecular levels.In this editorial,we focus on progenitor-based repair strategies for diabetic wound healing as revealed by scRNAseq and highlight the biological behaviour of various healing-related cells and the alteration of signalling pathways in the process of diabetic wound healing.ScRNAseq could not only deepen our understanding of the complex biology of diabetic wounds but also identify and validate new targets for inter-vention,offering hope for improved patient outcomes in the management of this challenging complication of DM.展开更多
BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing t...BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC.By revealing the heterogeneity and functional differences of B cells in cancer immunity,we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies.AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC,explore the potential driving mechanism of B cell development,analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules,and search for possible regulatory pathways to promote the anti-tumor effects of B cells.METHODS A total of 69 paracancer(normal),tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database(https://portal.gdc.cancer.gov/).After the immune cells were sorted by multicolor flow cytometry,the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform,and the data were analyzed using bioinformatics tools such as Seurat.The differences in the number and function of B cell infiltration between tumor and normal tissue,the interaction between B cell subsets and T cells and myeloid cell subsets,and the transcription factor regulatory network of B cell subsets were explored and analyzed.RESULTS Compared with normal tissue,the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly.Among them,germinal center B cells(GCB)played the most prominent role,with positive clone expansion and heavy chain mutation level increasing,and the trend of differentiation into memory B cells increased.However,the number of plasma cells in the tumor microenvironment decreased significantly,and the plasma cells secreting IgA antibodies decreased most obviously.In addition,compared with the immune microenvironment of normal tissues,GCB cells in tumor tissues became more closely connected with other immune cells such as T cells,and communication molecules that positively regulate immune function were significantly enriched.CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced,and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level.Meanwhile,GCB has enhanced its association with immune cells in the microenvironment,which plays a positive anti-tumor effect.展开更多
Due to the complex natures of dietary food components,it is difficult to elucidate how the compounds affect host health.Dietary food often selectively presents its mechanism of action on different cell types,and parti...Due to the complex natures of dietary food components,it is difficult to elucidate how the compounds affect host health.Dietary food often selectively presents its mechanism of action on different cell types,and participates in the modulation of targeted cells and their microenvironments within organs.However,the limitations of traditional in vitro assays or in vivo animal experiments cannot comprehensively examine cellular heterogeneity and the tissue-biased influences.Single-cell RNA sequencing(sc RNA-seq)has emerged as an indispensable methodology to decompose tissues into different cell types for the demonstration of transcriptional profiles of individual cells.Sc RNA-seq applications has been summarized on three typical organs(brain,liver,kidney),and two representative immune-and tumor related health problems.The everincreasing role of sc RNA-seq in dietary food research with further improvement can provide sub-cellular information and the coupling between other cellular modalities.In this review,we propose utilizing sc RNAseq to more effectively capture the subtle and complex effects of food chemicals,and how they may lead to health problems at single-cell resolution.This novel technique will be valuable to elucidate the underlying mechanism of both the health benefits of food nutrients and the detrimental consequences food toxicants at the cellular level.展开更多
The Wnt/β-catenin signaling pathway is the main target of tooth regeneration regulation.Treatment of cells with AZD2858 stimulates the Wnt/β-catenin signaling pathway,yet the function of this pathway in tooth regene...The Wnt/β-catenin signaling pathway is the main target of tooth regeneration regulation.Treatment of cells with AZD2858 stimulates the Wnt/β-catenin signaling pathway,yet the function of this pathway in tooth regeneration remains unclear.Here,we found that AZD2858 promotes the accumulation ofβ-catenin in the nuclei of stem cells from the apical papilla(SCAPs)and enhances cell proliferation.Single-cell sequencing was performed on SCAPs treated with AZD2858.Eight clusters were identified,namely SCAPs-CNTNAP2,SCAPs-DTL,SCAPs-MYH11,SCAPs-MKI67,SCAPs-CXCL8,SCAPs-TPM2,SCAPs-IFIT2 and SCAPs-NEK10.The pseudo-time trajectory analysis showed that AZD2858 enhanced the evolution of SCAPs from SCAPs-TMP2 clusters to SCAPs-MYH11,SCAPs-CNTNAPs and SCAPs-NEK10 clusters via up-regulation of PRKCA,SMURF2,MAGI2,RBMS3,EXT1,CAMK2D,PLCB4,and PLCB1.These results demonstrate that AZD2858 enhances the proliferation of SCAPs-TPM2 cluster by activating the non-canonical Wnt/β-catenin signaling pathway.展开更多
Pancreatic cancer is associated with high mortality and is one of the most aggressive of malignancies,but studies have not fully evaluated its molecular subtypes,prognosis and response to immunotherapy of different su...Pancreatic cancer is associated with high mortality and is one of the most aggressive of malignancies,but studies have not fully evaluated its molecular subtypes,prognosis and response to immunotherapy of different subtypes.The purpose of this study was to explore the molecular subtypes and the key genes associated with the prognosis of pancreas cancer patients and study the clinical phenotype,prognosis and response to immunotherapy using single-cell seq data and bulk RNA seq data,and data retrieved from GEO and TCGA databases.Methods:Single-cell seq data and bioinformatics methods were used in this study.Pancreatic cancer data were retrieved from GEO and TCGA databases,the molecular subtypes of pancreatic cancer were determined using the six cGAS-STING related pathways,and the clinical phenotype,mutation,immunological characteristics and pathways related to pancreatic cancer were evaluated.Results:Pancreatic cancer was classified into 3 molecular subtypes,and survival analysis revealed that patients in Cluster3(C3)had the worst prognosis,whereas Cluster1(C1)had the best prognosis.The clinical phenotype and gene mutation were statistically different among the three molecular subtypes.Analysis of immunotherapy response revealed that most immune checkpoint genes were differentially expressed in the three subtypes.A lower risk of immune escape was observed in Cluster1(C1),indicating higher sensitivity to immunotherapeutic drugs and subjects in this Cluster are more likely to benefit from immunotherapy.The pathways related to pancreatic cancer were differentially enriched among the three subtypes.Five genes,namely SFRP1,GIPR,EMP1,COL17A and CXCL11 were selected to construct a prognostic signature.Conclusions:Single-cell seq data were to classify pancreatic cancer into three molecular subtypes based on differences in clinical phenotype,mutation,immune characteristics and differentially enriched pathways.Five prognosis-related genes were identified for prediction of survival of pancreatic cancer patients and to evaluate the efficacy of immunotherapy in various subtypes.展开更多
Intratumour heterogeneity is a longstanding field of focus for both researchers and clinicians. It refers to the diversity amongst cells within the same tumour. Two major hypotheses have attempted to explain the exist...Intratumour heterogeneity is a longstanding field of focus for both researchers and clinicians. It refers to the diversity amongst cells within the same tumour. Two major hypotheses have attempted to explain the existence of intratumour heterogeneity: (i) the clonal evolution (CE) theory and (ii) the cancer stem cell (CSC) model. CE theory emphasizes the evolutionary biological characteristics of the tumour, underscoring the initiation and progression of the disease. In contrast, the CSC model focuses on stem cell differentiation into distinct functions in order to stabilize the tumour microenvironment. Here we consider single-cell sequencing (SCS) as a newly developed technique for application to the investigation of intratumour heterogeneity and assess its relevance within research and clinical environments. Early detection of rare tumour cells, monitoring of circulating tumour cells (CTCs) and control of the occurrence of drug resistance are imoortant goals in early diagnosis, prognosis prediction and individualized medicine.展开更多
Single-cell sequencing technologies have rapidly progressed in recent years,and been applied to characterize stem cells in a number of organs.Somatic(postnatal)stem cells are generally identified using combinations of...Single-cell sequencing technologies have rapidly progressed in recent years,and been applied to characterize stem cells in a number of organs.Somatic(postnatal)stem cells are generally identified using combinations of cell surface markers and transcription factors.However,it has been challenging to define micro-heterogeneity within“stem cell”populations,each of which stands at a different level of differentiation.As stem cells become defined at a single-cell level,their differentiation path becomes clearly defined.Here,this viewpoint discusses the potential synergy of single-cell sequencing analyses with in vivo lineage-tracing approaches,with an emphasis on practical considerations in stem cell biology.展开更多
Single-cell RNA sequencing(scRNA-seq)is a comprehensive technical tool to analyze intracellular and intercellular interaction data by whole transcriptional profile analysis.Here,we describe the application in biomedic...Single-cell RNA sequencing(scRNA-seq)is a comprehensive technical tool to analyze intracellular and intercellular interaction data by whole transcriptional profile analysis.Here,we describe the application in biomedical research,focusing on the immune system during organ transplantation and rejection.Unlike conventional transcriptome analysis,this method provides a full map of multiple cell populations in one specific tissue and presents a dynamic and transient unbiased method to explore the progression of allograft dysfunction,starting from the stress response to final graft failure.This promising sequencing technology remarkably improves individualized organ rejection treatment by identifying decisive cellular subgroups and cell-specific interactions.展开更多
With the rapid development of histological techniques and the widespread applica-tion of single-cell sequencing in eukaryotes,researchers desire to explore individual microbial.genotypes and functional expression,whic...With the rapid development of histological techniques and the widespread applica-tion of single-cell sequencing in eukaryotes,researchers desire to explore individual microbial.genotypes and functional expression,which deepens our understanding of microorganisms.In this review,the history of the development of microbial detection technologies was revealed and the difficulties in the application of single-cell sequencing in microorganisms were dissected as well.Moreover,the characteristics of the currently emerging microbial single-cell sequencing(Microbe-seq)technology were summarized,and the prospects of the application of Microbe-seq in microorganisms were distilled based on the current development status.Despite its mature development,the Microbe-seq technology was still in the optimization stage.A retrospective study was conducted,aiming to promote the widespread application of single-cell sequencing in microorganisms and facilitate further improvement in the technol-ogy.展开更多
Objective:Epithelial cancers often originate from progenitor cells,while the origin of hepatocellular carcinoma(HCC)is still controversial.HCC,one of the deadliest cancers,is closely linked with liver injuries and chr...Objective:Epithelial cancers often originate from progenitor cells,while the origin of hepatocellular carcinoma(HCC)is still controversial.HCC,one of the deadliest cancers,is closely linked with liver injuries and chronic inflammation,which trigger massive infiltration of bone marrow-derived cells(BMDCs)during liver repair.Methods:To address the possible roles of BMDCs in HCC origination,we established a diethylnitrosamine(DEN)-induced HCC model in bone marrow transplanted mice.Immunohistochemistry and frozen tissue immunofluorescence were used to verify DENinduced HCC in the pathology of the disease.The cellular origin of DEN-induced HCC was further studied by single cell sequencing,single-cell nested PCR,and immunofluorescence-fluorescence in situ hybridization.Results:Studies by using single cell sequencing and biochemical analysis revealed that HCC cells in these mice were coming from donor mice BMDCs,and not from recipient mice.Furthermore,the copy numbers of mouse orthologs of several HCC-related genes previously reported in human HCC were also altered in our mouse model.DEN-induced HCCs exhibited a similar histological phenotype and genomic profile as human HCCs.Conclusions:These results suggested that BMDCs are an important origin of HCC,which provide important clues to HCC prevention,detection,and treatments.展开更多
Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell tr...Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell transcriptome sequencing in Zhongjiazao 17,a popular Chinese indica rice cultivar.Of 15 cell clusters,13 were assigned to cell types using marker genes and cluster-specific genes.Marker genes of multiple cell types were expressed in several clusters,suggesting a complex developmental system.Some genes for signaling by phytohormones such as abscisic acid were highly expressed in specific clusters.Various cis-elements in the promoters of genes specifically expressed in cell clusters were calculated,and some key hormone-related motifs were frequent in certain clusters.Spatial expression patterns of genes involved in rapid seed germination,seedling growth,and development were identified.These findings enhanced our understanding of cellular diversity and specialization within plumules of rice,a monocotyledonous model crop.展开更多
BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their assoc...BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.展开更多
High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat ...High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel(Healaflow■).Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure.Our results identified a total of 12 cell types,namely retinal pigment epithelial cells,rod-photoreceptor cells,bipolar cells,Müller cells,microglia,cone-photoreceptor cells,retinal ganglion cells,endothelial cells,retinal progenitor cells,oligodendrocytes,pericytes,and fibroblasts.The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells,with ganglion cells decreased by 23%.Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure.We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression.We found upregulation of the B3gat2 gene,which is associated with neuronal migration and adhesion,and downregulation of the Tsc22d gene,which participates in inhibition of inflammation.This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure.These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies.展开更多
Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and ...Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult.Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols,which have partially addressed these challenges.In this review,we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data.Furthermore,we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells,delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis,investigating abnormal spermatogenesis in humans,and,ultimately,elucidating the molecular evolution of mammalian spermatogenesis.展开更多
The microenvironment at the maternal-fetal interface is optimized to facilitate the development and survival of the fetus during pregnancy.It involves a balance between cell populations and interactions of the fetal p...The microenvironment at the maternal-fetal interface is optimized to facilitate the development and survival of the fetus during pregnancy.It involves a balance between cell populations and interactions of the fetal placenta with various cell types(ie,stromal cells,endothelial cells,immune cells,and fibroblasts)that are embedded in the maternal endometrium/decidua.Aberrant shifts in cell populations and deranged cell-cell interactions are closely related to pregnancy disorders.Thus,analysis of the dynamic changes in cell populations and their interactions at the maternal-fetal interface in normal and complicated pregnancies is essential to provide insights into the fundamental processes involved in the establishment and maintenance of normal pregnancy,and how these processes are dysregulated.Thus,informing novel pathways for therapeutic targets of pregnancy complications.Single-cell sequencing(SCS)is a powerful tool for transcriptome analysis at single-cell resolution.Combined with information on the developmental trajectory and function of different cell populations,SCS can provide an unparalleled opportunity for refining the spatiotemporal cell atlas to elaborate dynamic changes in cell populations and their interactions in tissues that consist of highly heterogeneous cell populations such as the maternal-fetal interface.This minireview briefly summarizes traditional methods and their limitations for analyzing maternal-fetal interface cell-cell interactions,and introduces the current applications,advantages,limitations,and prospective applications of SCS in research on maternal-fetal interactions.展开更多
Single-cell RNA sequencing has been broadly applied to head and neck squamous cell carcinoma(HNSCC) for characterizing the heterogeneity and genomic mutations of HNSCC benefiting from the advantage of single-cell reso...Single-cell RNA sequencing has been broadly applied to head and neck squamous cell carcinoma(HNSCC) for characterizing the heterogeneity and genomic mutations of HNSCC benefiting from the advantage of single-cell resolution. We summarized most of the current studies and aimed to explore their research methods and ideas, as well as how to transform them into clinical applications. Through single-cell RNA sequencing, we found the differences in tumor cells’ expression programs and differentiation tracks. The studies of immune microenvironment allowed us to distinguish immune cell subpopulations, the extensive expression of immune checkpoints, and the complex crosstalk network between immune cells and non-immune cells. For cancerassociated fibroblasts(CAFs), single-cell RNA sequencing had made an irreplaceable contribution to the exploration of their differentiation status, specific CAFs markers, and the interaction with tumor cells and immune cells. In addition, we demonstrated in detail how single-cell RNA sequencing explored the HNSCC epithelial-tomesenchymal transition(EMT) model and the mechanism of drug resistance, as well as its clinical value.展开更多
The advent of single-cell RNA sequencing(scRNA-seq)has provided insight into the tumour immune microenvironment(TIME).This review focuses on the application of scRNA-seq in investigation of the TIME.Over time,scRNA-se...The advent of single-cell RNA sequencing(scRNA-seq)has provided insight into the tumour immune microenvironment(TIME).This review focuses on the application of scRNA-seq in investigation of the TIME.Over time,scRNA-seq methods have evolved,and components of the TIME have been deciphered with high resolution.In this review,we first introduced the principle of scRNA-seq and compared different sequencing approaches.Novel cell types in the TIME,a continuous transitional state,and mutual intercommunication among TIME components present potential targets for prognosis prediction and treatment in cancer.Thus,we concluded novel cell clusters of cancerassociated fibroblasts(CAFs),T cells,tumour-associated macrophages(TAMs)and dendritic cells(DCs)discovered after the application of scRNA-seq in TIME.We also proposed the development of TAMs and exhausted T cells,as well as the possible targets to interrupt the process.In addition,the therapeutic interventions based on cellular interactions in TIME were also summarized.For decades,quantification of the TIME components has been adopted in clinical practice to predict patient survival and response to therapy and is expected to play an important role in the precise treatment of cancer.Summarizing the current findings,we believe that advances in technology and wide application of single-cell analysis can lead to the discovery of novel perspectives on cancer therapy,which can subsequently be implemented in the clinic.Finally,we propose some future directions in the field of TIME studies that can be aided by scRNA-seq technology.展开更多
Gaining a better understanding of autoprotection against drug-induced liver injury(DILI)may provide new strategies for its prevention and therapy.However,little is known about the underlying mechanisms of this phenome...Gaining a better understanding of autoprotection against drug-induced liver injury(DILI)may provide new strategies for its prevention and therapy.However,little is known about the underlying mechanisms of this phenomenon.We used single-cell RNA sequencing to characterize the dynamics and functions of hepatic non-parenchymal cells(NPCs)in autoprotection against DILI,using acetaminophen(APAP)as a model drug.Autoprotection was modeled through pretreatment with a mildly hepatotoxic dose of APAP in mice,followed by a higher dose in a secondary challenge.NPC subsets and dynamic changes were identified in the APAP(hepatotoxicity-sensitive)and APAP-resistant(hepatotoxicity-resistant)groups.A chemokine(C-C motif)ligand 2^(+)endothelial cell subset almost disappeared in the APAP-resistant group,and an R-spondin 3^(+)endothelial cell subset promoted hepatocyte proliferation and played an important role in APAP autoprotection.Moreover,the dendritic cell subset DC-3 may protect the liver from APAP hepatotoxicity by inducing low reactivity and suppressing the autoimmune response and occurrence of inflammation.DC-3 cells also promoted angiogenesis through crosstalk with endothelial cells via vascular endothelial growth factor-associated ligand-receptor pairs and facilitated liver tissue repair in the APAP-resistant group.In addition,the natural killer cell subsets NK-3 and NK-4 and the Sca-1^(-)CD62L^(+)natural killer T cell subset may promote autoprotection through interferon-γ-dependent pathways.Furthermore,macrophage and neutrophil subpopulations with anti-inflammatory phenotypes promoted tolerance to APAP hepatotoxicity.Overall,this study reveals the dynamics of NPCs in the resistance to APAP hepatotoxicity and provides novel insights into the mechanism of autoprotection against DILI at a high resolution.展开更多
The corneal epithelium is composed of stratified squamous epithelial cells on the outer surface of the eye,which acts as a protective barrier and is critical for clear and stable vision.Its continuous renewal or wound...The corneal epithelium is composed of stratified squamous epithelial cells on the outer surface of the eye,which acts as a protective barrier and is critical for clear and stable vision.Its continuous renewal or wound healing depends on the proliferation and differentiation of limbal stem cells(LSCs),a cell population that resides at the limbus in a highly regulated niche.Dysfunction of LSCs or their niche can cause limbal stem cell deficiency,a disease that is manifested by failed epithelial wound healing or even blindness.Nevertheless,compared to stem cells in other tissues,little is known about the LSCs and their niche.With the advent of single-cell RNA sequencing,our understanding of LSC characteristics and their microenvironment has grown considerably.In this review,we summarized the current findings from single-cell studies in the field of cornea research and focused on important advancements driven by this technology,including the heterogeneity of the LSC population,novel LSC markers and regulation of the LSC niche,which will provide a reference for clinical issues such as corneal epithelial wound healing,ocular surface reconstruction and interventions for related diseases.展开更多
Bladder cancer(BC)is the 10th most common cancer worldwide,with about 0.5 million reported new cases and about 0.2 million deaths per year.In this scoping review,we summarize the current evidence regarding the clinica...Bladder cancer(BC)is the 10th most common cancer worldwide,with about 0.5 million reported new cases and about 0.2 million deaths per year.In this scoping review,we summarize the current evidence regarding the clinical implications of single-cell sequencing for bladder cancer based on PRISMA guidelines.We searched PubMed,CENTRAL,Embase,and supplemented with manual searches through the Scopus,and Web of Science for published studies until February 2023.We included original studies that used at least one single-cell technology to study bladder cancer.Forty-one publications were included in the review.Twenty-nine studies showed that this technology can identify cell subtypes in the tumor microenvironment that may predict prognosis or response to immune checkpoint inhibition therapy.Two studies were able to diagnose BC by identifying neoplastic cells through single-cell sequencing urine samples.The remaining studies were mainly a preclinical exploration of tumor microenvironment at single cell level.Single-cell sequencing technology can discriminate heterogeneity in bladder tumor cells and determine the key molecular properties that can lead to the discovery of novel perspectives on cancer management.This nascent tool can advance the early diagnosis,prognosis judgment,and targeted therapy of bladder cancer.展开更多
基金Supported by Shenzhen Science and Technology Program,No.GJHZ20210705142543019Guangdong Basic and Applied Basic Research Foundation,No.2023A1515220074.
文摘Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding the pathogenesis of diabetic wounds,the underlying mechanisms remain unclear.The advent of single-cell RNA sequencing(scRNAseq)has revolutionised biological research by enabling the identification of novel cell types,the discovery of cellular markers,the analysis of gene expression patterns and the prediction of develop-mental trajectories.This powerful tool allows for an in-depth exploration of pathogenesis at the cellular and molecular levels.In this editorial,we focus on progenitor-based repair strategies for diabetic wound healing as revealed by scRNAseq and highlight the biological behaviour of various healing-related cells and the alteration of signalling pathways in the process of diabetic wound healing.ScRNAseq could not only deepen our understanding of the complex biology of diabetic wounds but also identify and validate new targets for inter-vention,offering hope for improved patient outcomes in the management of this challenging complication of DM.
文摘BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC.By revealing the heterogeneity and functional differences of B cells in cancer immunity,we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies.AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC,explore the potential driving mechanism of B cell development,analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules,and search for possible regulatory pathways to promote the anti-tumor effects of B cells.METHODS A total of 69 paracancer(normal),tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database(https://portal.gdc.cancer.gov/).After the immune cells were sorted by multicolor flow cytometry,the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform,and the data were analyzed using bioinformatics tools such as Seurat.The differences in the number and function of B cell infiltration between tumor and normal tissue,the interaction between B cell subsets and T cells and myeloid cell subsets,and the transcription factor regulatory network of B cell subsets were explored and analyzed.RESULTS Compared with normal tissue,the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly.Among them,germinal center B cells(GCB)played the most prominent role,with positive clone expansion and heavy chain mutation level increasing,and the trend of differentiation into memory B cells increased.However,the number of plasma cells in the tumor microenvironment decreased significantly,and the plasma cells secreting IgA antibodies decreased most obviously.In addition,compared with the immune microenvironment of normal tissues,GCB cells in tumor tissues became more closely connected with other immune cells such as T cells,and communication molecules that positively regulate immune function were significantly enriched.CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced,and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level.Meanwhile,GCB has enhanced its association with immune cells in the microenvironment,which plays a positive anti-tumor effect.
基金funded by the National Natural Science Foundation of China(32170495)the Emergency Project for Risk Assessment of Areca Nut(Key Project of Department of Agriculture and Rural Affairs of Hainan Province&Wanning Municipal People’s Government)。
文摘Due to the complex natures of dietary food components,it is difficult to elucidate how the compounds affect host health.Dietary food often selectively presents its mechanism of action on different cell types,and participates in the modulation of targeted cells and their microenvironments within organs.However,the limitations of traditional in vitro assays or in vivo animal experiments cannot comprehensively examine cellular heterogeneity and the tissue-biased influences.Single-cell RNA sequencing(sc RNA-seq)has emerged as an indispensable methodology to decompose tissues into different cell types for the demonstration of transcriptional profiles of individual cells.Sc RNA-seq applications has been summarized on three typical organs(brain,liver,kidney),and two representative immune-and tumor related health problems.The everincreasing role of sc RNA-seq in dietary food research with further improvement can provide sub-cellular information and the coupling between other cellular modalities.In this review,we propose utilizing sc RNAseq to more effectively capture the subtle and complex effects of food chemicals,and how they may lead to health problems at single-cell resolution.This novel technique will be valuable to elucidate the underlying mechanism of both the health benefits of food nutrients and the detrimental consequences food toxicants at the cellular level.
基金the fund of National Natural Science Foundation of China(82170951)Beijing Natural Science Foundation(7222079).
文摘The Wnt/β-catenin signaling pathway is the main target of tooth regeneration regulation.Treatment of cells with AZD2858 stimulates the Wnt/β-catenin signaling pathway,yet the function of this pathway in tooth regeneration remains unclear.Here,we found that AZD2858 promotes the accumulation ofβ-catenin in the nuclei of stem cells from the apical papilla(SCAPs)and enhances cell proliferation.Single-cell sequencing was performed on SCAPs treated with AZD2858.Eight clusters were identified,namely SCAPs-CNTNAP2,SCAPs-DTL,SCAPs-MYH11,SCAPs-MKI67,SCAPs-CXCL8,SCAPs-TPM2,SCAPs-IFIT2 and SCAPs-NEK10.The pseudo-time trajectory analysis showed that AZD2858 enhanced the evolution of SCAPs from SCAPs-TMP2 clusters to SCAPs-MYH11,SCAPs-CNTNAPs and SCAPs-NEK10 clusters via up-regulation of PRKCA,SMURF2,MAGI2,RBMS3,EXT1,CAMK2D,PLCB4,and PLCB1.These results demonstrate that AZD2858 enhances the proliferation of SCAPs-TPM2 cluster by activating the non-canonical Wnt/β-catenin signaling pathway.
文摘Pancreatic cancer is associated with high mortality and is one of the most aggressive of malignancies,but studies have not fully evaluated its molecular subtypes,prognosis and response to immunotherapy of different subtypes.The purpose of this study was to explore the molecular subtypes and the key genes associated with the prognosis of pancreas cancer patients and study the clinical phenotype,prognosis and response to immunotherapy using single-cell seq data and bulk RNA seq data,and data retrieved from GEO and TCGA databases.Methods:Single-cell seq data and bioinformatics methods were used in this study.Pancreatic cancer data were retrieved from GEO and TCGA databases,the molecular subtypes of pancreatic cancer were determined using the six cGAS-STING related pathways,and the clinical phenotype,mutation,immunological characteristics and pathways related to pancreatic cancer were evaluated.Results:Pancreatic cancer was classified into 3 molecular subtypes,and survival analysis revealed that patients in Cluster3(C3)had the worst prognosis,whereas Cluster1(C1)had the best prognosis.The clinical phenotype and gene mutation were statistically different among the three molecular subtypes.Analysis of immunotherapy response revealed that most immune checkpoint genes were differentially expressed in the three subtypes.A lower risk of immune escape was observed in Cluster1(C1),indicating higher sensitivity to immunotherapeutic drugs and subjects in this Cluster are more likely to benefit from immunotherapy.The pathways related to pancreatic cancer were differentially enriched among the three subtypes.Five genes,namely SFRP1,GIPR,EMP1,COL17A and CXCL11 were selected to construct a prognostic signature.Conclusions:Single-cell seq data were to classify pancreatic cancer into three molecular subtypes based on differences in clinical phenotype,mutation,immune characteristics and differentially enriched pathways.Five prognosis-related genes were identified for prediction of survival of pancreatic cancer patients and to evaluate the efficacy of immunotherapy in various subtypes.
基金This study was supported by the National Basic Research Program of China (No. 2012CB518306), the National Natural Science Foundation of China (No. 81101946), the Prostate Cancer Foundation Young Investigator Award and the Shanghai Pujiang Program (12PJD008).
文摘Intratumour heterogeneity is a longstanding field of focus for both researchers and clinicians. It refers to the diversity amongst cells within the same tumour. Two major hypotheses have attempted to explain the existence of intratumour heterogeneity: (i) the clonal evolution (CE) theory and (ii) the cancer stem cell (CSC) model. CE theory emphasizes the evolutionary biological characteristics of the tumour, underscoring the initiation and progression of the disease. In contrast, the CSC model focuses on stem cell differentiation into distinct functions in order to stabilize the tumour microenvironment. Here we consider single-cell sequencing (SCS) as a newly developed technique for application to the investigation of intratumour heterogeneity and assess its relevance within research and clinical environments. Early detection of rare tumour cells, monitoring of circulating tumour cells (CTCs) and control of the occurrence of drug resistance are imoortant goals in early diagnosis, prognosis prediction and individualized medicine.
基金This research was supported by National Institute of Health Grants R01DE026666 and R01DE030630(to NO)and R01DE029181(to WO).
文摘Single-cell sequencing technologies have rapidly progressed in recent years,and been applied to characterize stem cells in a number of organs.Somatic(postnatal)stem cells are generally identified using combinations of cell surface markers and transcription factors.However,it has been challenging to define micro-heterogeneity within“stem cell”populations,each of which stands at a different level of differentiation.As stem cells become defined at a single-cell level,their differentiation path becomes clearly defined.Here,this viewpoint discusses the potential synergy of single-cell sequencing analyses with in vivo lineage-tracing approaches,with an emphasis on practical considerations in stem cell biology.
文摘Single-cell RNA sequencing(scRNA-seq)is a comprehensive technical tool to analyze intracellular and intercellular interaction data by whole transcriptional profile analysis.Here,we describe the application in biomedical research,focusing on the immune system during organ transplantation and rejection.Unlike conventional transcriptome analysis,this method provides a full map of multiple cell populations in one specific tissue and presents a dynamic and transient unbiased method to explore the progression of allograft dysfunction,starting from the stress response to final graft failure.This promising sequencing technology remarkably improves individualized organ rejection treatment by identifying decisive cellular subgroups and cell-specific interactions.
基金supported by the Key Research and Development Project of Zhejiang Province,China(No.2022C03026)the Zhejiang Medical and Health Technology Project(China)(No.2023RC274)Public Welfare Technology Application Research Program of Huzhou,China(No.2021GY15).
文摘With the rapid development of histological techniques and the widespread applica-tion of single-cell sequencing in eukaryotes,researchers desire to explore individual microbial.genotypes and functional expression,which deepens our understanding of microorganisms.In this review,the history of the development of microbial detection technologies was revealed and the difficulties in the application of single-cell sequencing in microorganisms were dissected as well.Moreover,the characteristics of the currently emerging microbial single-cell sequencing(Microbe-seq)technology were summarized,and the prospects of the application of Microbe-seq in microorganisms were distilled based on the current development status.Despite its mature development,the Microbe-seq technology was still in the optimization stage.A retrospective study was conducted,aiming to promote the widespread application of single-cell sequencing in microorganisms and facilitate further improvement in the technol-ogy.
基金supported by the grants from the National Natural Science Foundation of China(Grant No.81902401,81972656,31671421,81970107,81600083)the National 135 Major Project of China(Grant No.2018ZX10723204,2018ZX10302205)+3 种基金the Natural Science Foundation of Tianjin(Grant No.19JCQNJC09000)the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(2018PT32034)CAMS Innovation Fund for Medical Sciences(Grant No.2016-12M-1-003)supported by the China Scholarship Council(Grant No.201906940003)。
文摘Objective:Epithelial cancers often originate from progenitor cells,while the origin of hepatocellular carcinoma(HCC)is still controversial.HCC,one of the deadliest cancers,is closely linked with liver injuries and chronic inflammation,which trigger massive infiltration of bone marrow-derived cells(BMDCs)during liver repair.Methods:To address the possible roles of BMDCs in HCC origination,we established a diethylnitrosamine(DEN)-induced HCC model in bone marrow transplanted mice.Immunohistochemistry and frozen tissue immunofluorescence were used to verify DENinduced HCC in the pathology of the disease.The cellular origin of DEN-induced HCC was further studied by single cell sequencing,single-cell nested PCR,and immunofluorescence-fluorescence in situ hybridization.Results:Studies by using single cell sequencing and biochemical analysis revealed that HCC cells in these mice were coming from donor mice BMDCs,and not from recipient mice.Furthermore,the copy numbers of mouse orthologs of several HCC-related genes previously reported in human HCC were also altered in our mouse model.DEN-induced HCCs exhibited a similar histological phenotype and genomic profile as human HCCs.Conclusions:These results suggested that BMDCs are an important origin of HCC,which provide important clues to HCC prevention,detection,and treatments.
基金financially supported by the“STI2030-Major Project”of China(2023ZD04072)the National Key Research and Development Program of China(2021YFA1300400)+1 种基金the National Natural Science Foundation of China(32372099 and 32188102)the Young Science and Technology Talents(He Jian)in Hunan Province(2022RC1015)。
文摘Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell transcriptome sequencing in Zhongjiazao 17,a popular Chinese indica rice cultivar.Of 15 cell clusters,13 were assigned to cell types using marker genes and cluster-specific genes.Marker genes of multiple cell types were expressed in several clusters,suggesting a complex developmental system.Some genes for signaling by phytohormones such as abscisic acid were highly expressed in specific clusters.Various cis-elements in the promoters of genes specifically expressed in cell clusters were calculated,and some key hormone-related motifs were frequent in certain clusters.Spatial expression patterns of genes involved in rapid seed germination,seedling growth,and development were identified.These findings enhanced our understanding of cellular diversity and specialization within plumules of rice,a monocotyledonous model crop.
基金Supported by the National Natural Science Foundation of China,No.81960100Applied Basic Foundation of Yunnan Province,No.202001AY070001-192+2 种基金Young and Middle-aged Academic and Technical Leaders Reserve Talents Program in Yunnan Province,No.202305AC160018Yunnan Revitalization Talent Support Program,No.RLQB20200004 and No.RLMY20220013and Yunnan Health Training Project of High-Level Talents,No.H-2017002。
文摘BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.
基金supported by the National Natural Science Foundation of China,No.82371051(to DW)the Natural Science Foundation of Beijing,No.7212092(to DW)+1 种基金the Capital’s Funds for Health Improvement and Research,No.2022-2-5041(to DW)the Fund of Science and Technology Development of Beijing Rehabilitation Hospital,Capital Medical University,No.2021R-001(to YL).
文摘High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel(Healaflow■).Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure.Our results identified a total of 12 cell types,namely retinal pigment epithelial cells,rod-photoreceptor cells,bipolar cells,Müller cells,microglia,cone-photoreceptor cells,retinal ganglion cells,endothelial cells,retinal progenitor cells,oligodendrocytes,pericytes,and fibroblasts.The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells,with ganglion cells decreased by 23%.Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure.We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression.We found upregulation of the B3gat2 gene,which is associated with neuronal migration and adhesion,and downregulation of the Tsc22d gene,which participates in inhibition of inflammation.This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure.These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies.
基金supported by National Key Research and Development Program of China(2022YFD1302201,2023YFF1000904)the National Natural Science Foundation of China(32072806,32372970)+2 种基金Key Technologies Demonstration of Animal Husbandry in Shaanxi Province(20221086,20230978)Inner Mongolia Autonomous Region Competition Leaders(2022JBGS0025)Xinjian Ugur Autonouous Region Scientific Research and Innovation Platform Construction Project“State Key Laboratory of Genetic Improvement and Germplasm”。
文摘Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult.Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols,which have partially addressed these challenges.In this review,we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data.Furthermore,we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells,delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis,investigating abnormal spermatogenesis in humans,and,ultimately,elucidating the molecular evolution of mammalian spermatogenesis.
基金supported by the Natural Science Foundation of Guangxi Zhuang Autonomous Region(2018GXNSFDA050017,2019GXNSFFA245013)the National Natural Science Foundation of China(81871172)the Guangxi Medical University Training Program for Distinguished Young Scholars.
文摘The microenvironment at the maternal-fetal interface is optimized to facilitate the development and survival of the fetus during pregnancy.It involves a balance between cell populations and interactions of the fetal placenta with various cell types(ie,stromal cells,endothelial cells,immune cells,and fibroblasts)that are embedded in the maternal endometrium/decidua.Aberrant shifts in cell populations and deranged cell-cell interactions are closely related to pregnancy disorders.Thus,analysis of the dynamic changes in cell populations and their interactions at the maternal-fetal interface in normal and complicated pregnancies is essential to provide insights into the fundamental processes involved in the establishment and maintenance of normal pregnancy,and how these processes are dysregulated.Thus,informing novel pathways for therapeutic targets of pregnancy complications.Single-cell sequencing(SCS)is a powerful tool for transcriptome analysis at single-cell resolution.Combined with information on the developmental trajectory and function of different cell populations,SCS can provide an unparalleled opportunity for refining the spatiotemporal cell atlas to elaborate dynamic changes in cell populations and their interactions in tissues that consist of highly heterogeneous cell populations such as the maternal-fetal interface.This minireview briefly summarizes traditional methods and their limitations for analyzing maternal-fetal interface cell-cell interactions,and introduces the current applications,advantages,limitations,and prospective applications of SCS in research on maternal-fetal interactions.
基金funded by Beijing Hope Run Special Fund of Cancer Foundation of China (No.LC2020A19)。
文摘Single-cell RNA sequencing has been broadly applied to head and neck squamous cell carcinoma(HNSCC) for characterizing the heterogeneity and genomic mutations of HNSCC benefiting from the advantage of single-cell resolution. We summarized most of the current studies and aimed to explore their research methods and ideas, as well as how to transform them into clinical applications. Through single-cell RNA sequencing, we found the differences in tumor cells’ expression programs and differentiation tracks. The studies of immune microenvironment allowed us to distinguish immune cell subpopulations, the extensive expression of immune checkpoints, and the complex crosstalk network between immune cells and non-immune cells. For cancerassociated fibroblasts(CAFs), single-cell RNA sequencing had made an irreplaceable contribution to the exploration of their differentiation status, specific CAFs markers, and the interaction with tumor cells and immune cells. In addition, we demonstrated in detail how single-cell RNA sequencing explored the HNSCC epithelial-tomesenchymal transition(EMT) model and the mechanism of drug resistance, as well as its clinical value.
基金supported by the National Key Research Development Program of China(2021YFA1301203)the National Natural Science Foundation of China(82103031,82103918,81973408)+6 种基金the Clinical Research Incubation Project,West China Hospital,Sichuan University(22HXFH019)the China Postdoctoral Science Foundation(2019 M653416)the International Cooperation Project of Chengdu Municipal Science and Technology Bureau(2020-GH02-00017-HZ)the“1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University”(ZYJC18035,ZYJC18025,ZYYC20003,ZYJC18003)the GIST Research Institute(GRI)IIBR grants funded by the GISTthe National Research Foundation of Korea funded by the Korean government(MSIP)(2019R1C1C1005403,2019R1A4A1028802 and2021M3H9A2097520)the Post-Doctor Research Project,West China Hospital,Sichuan University(2021HXBH054)。
文摘The advent of single-cell RNA sequencing(scRNA-seq)has provided insight into the tumour immune microenvironment(TIME).This review focuses on the application of scRNA-seq in investigation of the TIME.Over time,scRNA-seq methods have evolved,and components of the TIME have been deciphered with high resolution.In this review,we first introduced the principle of scRNA-seq and compared different sequencing approaches.Novel cell types in the TIME,a continuous transitional state,and mutual intercommunication among TIME components present potential targets for prognosis prediction and treatment in cancer.Thus,we concluded novel cell clusters of cancerassociated fibroblasts(CAFs),T cells,tumour-associated macrophages(TAMs)and dendritic cells(DCs)discovered after the application of scRNA-seq in TIME.We also proposed the development of TAMs and exhausted T cells,as well as the possible targets to interrupt the process.In addition,the therapeutic interventions based on cellular interactions in TIME were also summarized.For decades,quantification of the TIME components has been adopted in clinical practice to predict patient survival and response to therapy and is expected to play an important role in the precise treatment of cancer.Summarizing the current findings,we believe that advances in technology and wide application of single-cell analysis can lead to the discovery of novel perspectives on cancer therapy,which can subsequently be implemented in the clinic.Finally,we propose some future directions in the field of TIME studies that can be aided by scRNA-seq technology.
基金supported by the National Natural Science Foundation of China(Grant No.:81870426)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(Grant No.:ZYYCXTD-D-202002)the Fundamental Research Funds for the Central Universities(Grant No.:226-2023-00059),and the Fundamental Research Funds for the Central Universities.
文摘Gaining a better understanding of autoprotection against drug-induced liver injury(DILI)may provide new strategies for its prevention and therapy.However,little is known about the underlying mechanisms of this phenomenon.We used single-cell RNA sequencing to characterize the dynamics and functions of hepatic non-parenchymal cells(NPCs)in autoprotection against DILI,using acetaminophen(APAP)as a model drug.Autoprotection was modeled through pretreatment with a mildly hepatotoxic dose of APAP in mice,followed by a higher dose in a secondary challenge.NPC subsets and dynamic changes were identified in the APAP(hepatotoxicity-sensitive)and APAP-resistant(hepatotoxicity-resistant)groups.A chemokine(C-C motif)ligand 2^(+)endothelial cell subset almost disappeared in the APAP-resistant group,and an R-spondin 3^(+)endothelial cell subset promoted hepatocyte proliferation and played an important role in APAP autoprotection.Moreover,the dendritic cell subset DC-3 may protect the liver from APAP hepatotoxicity by inducing low reactivity and suppressing the autoimmune response and occurrence of inflammation.DC-3 cells also promoted angiogenesis through crosstalk with endothelial cells via vascular endothelial growth factor-associated ligand-receptor pairs and facilitated liver tissue repair in the APAP-resistant group.In addition,the natural killer cell subsets NK-3 and NK-4 and the Sca-1^(-)CD62L^(+)natural killer T cell subset may promote autoprotection through interferon-γ-dependent pathways.Furthermore,macrophage and neutrophil subpopulations with anti-inflammatory phenotypes promoted tolerance to APAP hepatotoxicity.Overall,this study reveals the dynamics of NPCs in the resistance to APAP hepatotoxicity and provides novel insights into the mechanism of autoprotection against DILI at a high resolution.
文摘The corneal epithelium is composed of stratified squamous epithelial cells on the outer surface of the eye,which acts as a protective barrier and is critical for clear and stable vision.Its continuous renewal or wound healing depends on the proliferation and differentiation of limbal stem cells(LSCs),a cell population that resides at the limbus in a highly regulated niche.Dysfunction of LSCs or their niche can cause limbal stem cell deficiency,a disease that is manifested by failed epithelial wound healing or even blindness.Nevertheless,compared to stem cells in other tissues,little is known about the LSCs and their niche.With the advent of single-cell RNA sequencing,our understanding of LSC characteristics and their microenvironment has grown considerably.In this review,we summarized the current findings from single-cell studies in the field of cornea research and focused on important advancements driven by this technology,including the heterogeneity of the LSC population,novel LSC markers and regulation of the LSC niche,which will provide a reference for clinical issues such as corneal epithelial wound healing,ocular surface reconstruction and interventions for related diseases.
文摘Bladder cancer(BC)is the 10th most common cancer worldwide,with about 0.5 million reported new cases and about 0.2 million deaths per year.In this scoping review,we summarize the current evidence regarding the clinical implications of single-cell sequencing for bladder cancer based on PRISMA guidelines.We searched PubMed,CENTRAL,Embase,and supplemented with manual searches through the Scopus,and Web of Science for published studies until February 2023.We included original studies that used at least one single-cell technology to study bladder cancer.Forty-one publications were included in the review.Twenty-nine studies showed that this technology can identify cell subtypes in the tumor microenvironment that may predict prognosis or response to immune checkpoint inhibition therapy.Two studies were able to diagnose BC by identifying neoplastic cells through single-cell sequencing urine samples.The remaining studies were mainly a preclinical exploration of tumor microenvironment at single cell level.Single-cell sequencing technology can discriminate heterogeneity in bladder tumor cells and determine the key molecular properties that can lead to the discovery of novel perspectives on cancer management.This nascent tool can advance the early diagnosis,prognosis judgment,and targeted therapy of bladder cancer.