The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poo...The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs.展开更多
Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capac...Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capacity degradation of these single-crystal cathodes during continuous lithation/delithation cycling remains unclear.Understanding the mapping relationship between the macroscopic electrochemical properties and the material physicochemical properties is crucial.Here,we investigate the correlation between the physical-chemical characteristics,phase transition,and capacity decay using capacity differential curve feature identification and in-situ X-ray spectroscopic imaging.We systematically clarify the dominant mechanism of phase evolution in aging cycling.Appropriately high cut-off voltages can mitigate the slow kinetic and electrochemical properties of single-crystal cathodes.We also find that second-order differential capacity discharge characteristic curves can be used to identify the crystal structure disorder of Ni-rich cathodes.These findings constitute a step forward in elucidating the correlation between the electrochemical extrinsic properties and the physicochemical intrinsic properties and provide new perspectives for failure analysis of layered electrode materials.展开更多
Single-crystal Nickel-rich layered oxides has been recognized as one of the promising cathodes for nextgeneration lithium batteries on account of their high capacity,while its practical application was hindered by str...Single-crystal Nickel-rich layered oxides has been recognized as one of the promising cathodes for nextgeneration lithium batteries on account of their high capacity,while its practical application was hindered by structural instability and slow Li^(+) transfer kinetics.Herein,a surface-to-bulk engineered single-crystal LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(Ni90) cathode,which features W-doped bulk and Li_(2)WO_(4) surface layer,was successfully achieved by a one-step high-valence W^(6+) modification.The as-obtained W-modified Ni90 delivers excellent cycling stability(89.8% capacity retention after 300 cycles at 0.5 C)and rate capability.The enhanced electrochemical performance was ascribed to the doped-W induced stabilized lattice oxygen,reduced Li^(+)/Ni^(2+) mixing and inhibited H2-H3 phase transition in the bulk,and Li_(2)WO_(4) layer generated stabilized cathode/electrolyte interface.In addition,the thinner LiF-rich cathode electrolyte interphase(CEI) on surface and smaller grain size for W-modified Ni90 benefit to its Li^(+) diffusion dynamics.The effect of high-valence W^(6+)on single-crystal Ni-rich cathode was firstly revealed in detail,which deepens the understanding of electrochemical behavior of Ni-rich cathode with high-valence cations modification,and provides clues for design of high-performance layered cathodes.展开更多
Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehic...Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles(EVs)sales,which is considered as the most promising nextgeneration cathode material for lithium-ion batteries(LIBs).However,the lack of deep understanding on the failure mechanism of NM has seriously hindered its application,especially under the harsh condition of high-voltage without sacrifices of reversible capacity.Herein,singlecrystal LiNi_(0.8)Mn_(0.2)O_(2) is selected and compared with traditional LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM),mainly focusing on the failure mechanism of Cofree cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic.Specifically,the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition,which exacerbates the distortion of the lattice,mechanical strain changes and exhibits poor electrochemical performance,especially under the high cutoff voltage.Furthermore,the reaction kinetic of NM is impaired due to the absence of Co element,especially at the single-crystal architecture.Whereas,the negative influence of Li/Ni antisite defect is controllable at low current densities,owing to the attenuated polarization.Notably,Co-free NM can exhibit better safety performance than that of NCM cathode.These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials,providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances.展开更多
Lead halide perovskites have attracted considerable attention as potential candidates for high-performance nano/microlasers,owing to their outstanding optical properties.However,the further development of perovskite m...Lead halide perovskites have attracted considerable attention as potential candidates for high-performance nano/microlasers,owing to their outstanding optical properties.However,the further development of perovskite microlaser arrays(especially based on polycrystalline thin films)produced by the conventional processing techniques is hindered by the chemical instability and surface roughness of the perovskite structures.Herein,we demonstrate a laser patterning of large-scale,highly crystalline perovskite single-crystal films to fabricate reproducible perovskite single-crystal-based microlaser arrays.Perovskite thin films were directly ablated by femtosecond-laser in multiple low-power cycles at a minimum machining line width of approximately 300 nm to realize high-precision,chemically clean,and repeatable fabrication of microdisk arrays.The surface impurities generated during the process can be washed away to avoid external optical loss due to the robustness of the single-crystal film.Moreover,the high-quality,large-sized perovskite single-crystal films can significantly improve the quality of microcavities,thereby realizing a perovskite microdisk laser with narrow linewidth(0.09 nm)and low threshold(5.1µJ/cm2).Benefiting from the novel laser patterning method and the large-sized perovskite single-crystal films,a high power and high color purity laser display with single-mode microlasers as pixels was successfully fabricated.Thus,this study may offer a potential platform for mass-scale and reproducible fabrication of microlaser arrays,and further facilitate the development of highly integrated applications based on perovskite materials.展开更多
LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) is extensively researched as one of the most widely used commercially materials for Li-ion batteries at present.However,the poor high-voltage performance(≥4.3 V)with low reversible cap...LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) is extensively researched as one of the most widely used commercially materials for Li-ion batteries at present.However,the poor high-voltage performance(≥4.3 V)with low reversible capacity limits its replacement for LiCoO_(2) in high-end digital field.Herein,three-in-one modification,Na-doping and Al_(2)O_(3)@Li_(3)BO_(3) dual-coating simultaneously,is explored for single-crystalline LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(N-NCM@AB),which exhibits excellent high-voltage performance.N-NCM@AB displays a discharge-specific capacity of 201.8 mAh g^(−1) at 0.2 C with a high upper voltage of 4.6 V and maintains 158.9 mAh g^(−1) discharge capacity at 1 C over 200 cycles with the corresponding capacity retention of 87.8%.Remarkably,the N-NCM@AB||graphite pouch-type full cell retains 81.2% of its initial capacity with high working voltage of 4.4 V over 1600 cycles.More importantly,the fundamental understandings of three-in-one modification on surface morphology,crystal structure,and phase transformation of N-NCM@AB are clearly revealed.The Na+doped into the Li–O slab can enhance the bond energy,stabilize the crystal structure,and facilitate Li+transport.Additionally,the interior surface layer of Li^(+)-ions conductor Li_(3)BO_(3) relieves the charge transfer resistance with surface coating,whereas the outer surface Al_(2)O_(3) coating layer is beneficial for reducing the active materials loss and alleviating the electrode/electrolyte parasite reaction.This three-in-one strategy provides a reference for the further research on the performance attenuation mechanism of NCM,paving a new avenue to boost the high-voltage performance of NCM cathode in Li-ion batteries.展开更多
The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model base...The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model based on Fourier's heat conduction equation,Hooke's law and the Alexander–Hasson equation was developed to analyze the thermal stress damage mechanism involved.The damage morphology of the ablated samples was observed using an optical microscope.The results show that the cooling process has an important influence on fracture in the laser-irradiated region of single-crystal germanium.Fracture is the result of a combination of thermal stress and reduction in local yield strength.展开更多
A single-crystal diamond detector is fabricated to diagnose 14.1 MeV deuterium-tritium(D-T)fusion neutrons.The size of its diamond film is 4.5 mm×4.5 mm×500μm.This film is sandwiched by a flat,strip-pattern...A single-crystal diamond detector is fabricated to diagnose 14.1 MeV deuterium-tritium(D-T)fusion neutrons.The size of its diamond film is 4.5 mm×4.5 mm×500μm.This film is sandwiched by a flat,strip-patterned gold electrode.The dark current of this detector is experimentally measured to be lower than 0.1 nA under an electric field of 30 kV cm^(-1).This diamond detector is used to measure D-T fusion neutrons with a flux of about 7.5×10^(5) s^(-1)cm^(-2).The pronounced peak with a central energy of 8.28 MeV characterizing the^(12)C(n,α)~9Be reaction in the neutron energy spectrum is experimentally diagnosed,and the energy resolution is better than 1.69%,which is the best result reported so far using a diamond detector.A clear peak with a central energy of 6.52 MeV characterizing the^(12)C(n,n')3αreaction is also identified with an energy resolution of better than 7.67%.展开更多
The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are ...The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are located in the Kwademen-Baguiomo shear zone. This mineralization, located only a few kilometers from the Kwademen gold deposit, is uncharacterized and, together with the latter, could constitute a gold potential capable of being economically exploitable. It is in this sense that this work is carried out with a view to characterizing the gold mineralization of the Baguiomo gold panning site. To carry out this work, we have made direct field measurements, combined with microstructures, and combined all this with data from geochemical rock analysis of the basalts that are the main host formations. Geochemical data show that tholeitic basalts formed from a mantle plume that was emplaced in an oceanic plateau context. Calc-alkaline basalts and andesites are comparable to Paleoproterozoic tholeitic basalts (PTH3), which are slightly enriched in light rare earths. Fertility tests show that these basalts concentrate between 3 and 6 ppb of gold at the time of accretion, which is sufficient for remobilization of this primary gold during the Eburnian orogeny to yield a deposit of around 4 - 5 Moz. Gold mineralization is associated with pyrite crystals when the latter are disseminated in the rock mass, whereas it is associated with hematite in quartz veins concordant with S1 shear deformation. It is mainly the pyrite crystals in the pressure shadows that contain the gold grains, whose development would be synchronous with micro-shear zone reactivation during the first phase of D1<sub>B</sub> deformation. The second phase of D2<sub>B</sub> deformation, which is a crenulation or fracture schistosity, does not significantly affect the shear deformation that controls mineralization.展开更多
The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated wi...The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated with the Anqi fault.This deposit exhibits characteristics typical of a fault-controlled lode system,and the orebodies consist of auriferous quartz veins and altered wall rocks within Early Carboniferous volcano-sedimentary rocks.Three stages of mineralization have been identified in the Hatu gold deposit:the early pyrite-albite-quartz stage,the middle polymetallic sulfides-ankerite-quartz stage,and late quartz-calcite stage.The sulfur isotopic values of pyrite and arsenopyrite vary in a narrow range from-0.8‰to1.3‰and an average of 0.4‰,the near-zeroδ~(34)S values implicate the thorough homogenization of the sulfur isotopes during the metamorphic dehydration of the Early Carboniferous volcano-sedimentary rocks.Lead isotopic results of pyrite and arsenopyrite(^(206)Pb/^(204)Pb=17.889-18.447,^(207)Pb/^(204)Pb=15.492-15.571,^(208)Pb/^(204)Pb=37.802-38.113)are clustered between orogenic and mantle/upper crust lines,indicating that the lead was mainly sourced from the hostrocks within the Early Carboniferous Tailegula Formation.The characteristics of S and Pb isotopes suggest that the ore-forming metals of the Hatu orogenic gold deposit are of metamorphogenic origin,associated with the continental collision between the Yili-Kazakhstan and Siberian plates during the Late Carboniferous.展开更多
Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant im...Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.展开更多
1.Objective The West Qinling Orogen extends east-west over 1500 km and is endowed with dozens of large-super large scale gold deposits.The Zaozigou gold deposit has a proven reserve of 134 t with an average grade of 3...1.Objective The West Qinling Orogen extends east-west over 1500 km and is endowed with dozens of large-super large scale gold deposits.The Zaozigou gold deposit has a proven reserve of 134 t with an average grade of 3.08 g/t thus is one of the largest deposits in the West Qinling Orogen.However,whether the fluid type is metamorphic or magmatichydrothermal and ore-formation processes of the Zaozigou gold deposit are equivocal.Scheelite is a ubiquitous accessory mineral in geologically diverse ore-deposit types and attested to be a strong indicator of ore-forming conditions and oredeposit genesis.展开更多
The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,w...The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,west of the Baimashan granitic batholith.In order to discern the characteristics of the ore-formingfluids,the underlying mineralization processes,and establish a foundation for the origin of the Yueguang gold depositfluid inclusion micro-thermometry,as well as quartz hydrogen and oxygen isotope analysis,have been carried out on samples obtained from various stages of mineralization.The hydrothermal miner-alization stages within the Yueguang gold deposit can be categorized into three stages:(i)the barren,pre-ore quartz-pyrite stage(Stage Ⅰ),the quartz-pyrite-gold stage(Stage Ⅱ),and the post-ore quartz-carbonate stage(Stage Ⅲ),with the second stage being the main mineralization stage.Thefluid inclusions identified in samples from the main min-eralization stage can predominantly be described with the NaCl–H_(2)O and CO_(2)–NaCl–H_(2)O systems.These inclusions display homogenization temperatures ranging from 158.8 to 334.9℃,and thefluid salinity ranges from 0.3%to 4.0%(wt.%NaCl equiv.).Laser Raman spectroscopy analysis of individual inclusions further reveals the presence of gas-phases such as CO_(2),CH_(4),and N_(2).Isotopic analysis indicatesδ^(18)Ofluid values ranging from 3.95 to 6.7‰ and δDH_(2)O values ranging from-71.9 to-55.7‰.These results indi-cate that the ore-formingfluid of the Yueguang gold deposit belongs to metamorphic hydrothermalfluids of middle-low temperature and low salinity.In the process of ore formation,gold is transported in the form of Au(HS)2-complexes,with gold deposition being driven byfluid immiscibility.Therefore,the Yueguang gold deposit is categorized as an orogenic gold deposit dominated by metamorphic hydrother-malfluid.It may become a new target for gold exploration in the Baimashan region,central Hunan Province.展开更多
The finite deformation structures recorded in the Essakane area, located in the northeast corner of Burkina Faso, highlight three major compressive deformation phases, successively named D1, D2, and D3. The D1 event p...The finite deformation structures recorded in the Essakane area, located in the northeast corner of Burkina Faso, highlight three major compressive deformation phases, successively named D1, D2, and D3. The D1 event phase, trending NE-SW, is characterised by P1 folds and S1 axial plane schistosity. The D2 phase trending NW-SE is characterised by folds P2, schistosity (S2) and shear (C) planes. And the D3 phase trending NNE-SSW to N-S is characterised by P3 folds, crenulation microfolds and S3 spaced schistosity. It has also been noted that gold mineralizations are mainly hosted in quartz, carbonate, pyrite, and arsenopyrite veins. Structural interpretation indicates that these veins are organized into lenticular bodies that were formed during the first two deformation phases (D1 and D2). This suggests a strong structural control typical of orogenic gold concentrations.展开更多
Homogeneous gold nanoparticles were synthesized under atmospheric pressure using a nonthermal helium plasma jet in a single-step process.A current power supply was used to generate the plasma discharge rich in diverse...Homogeneous gold nanoparticles were synthesized under atmospheric pressure using a nonthermal helium plasma jet in a single-step process.A current power supply was used to generate the plasma discharge rich in diverse reactive species.These species induce rapid chemical reactions responsible for the reduction of the gold salts upon contact with the liquid solution.In this study,spherical and monodispersed gold nanoparticles were obtained within 5 min of plasma exposure using a solution containing gold(Ⅲ)chloride hydrate(HAuCl_(4))as a precursor and polyvinylpyrrolidone(PVP)as a capping agent to inhibit agglomerations.The formation of these metal nanoparticles was initially perceptible through a visible change in the sample's color,transitioning from light yellow to a red/pink color.This was subsequently corroborated by UVvis spectroscopy,which revealed an optical absorption in the 520-550 nm range for Au NPs,corresponding to the surface plasmon resonance(SPR)band.An investigation into the impact of various parameters,including plasma discharge duration,precursor and capping agent concentrations,was carried out to optimize conditions for the formation of well-separated,spherical gold nanoparticles.Dynamic light scattering(DLS)was used to measure the size of these nanoparticles,transmission electron microscopy(TEM)was used to observe their morphology and X-ray diffraction(XRD)was also employed to determine their crystallographic structure.The results confirm that homogeneous spherical gold nanoparticles with an average diameter of 13 nm can be easily synthesized through a rapid,straightforward,and environmentally friendly approach utilizing a helium atmospheric pressure plasma.展开更多
The aim of this study is to contribute to better targeting of gold prospecting areas using geospatial information. To this end, 3 mining sites were selected for the study. They are: the Sénoufo belt (Barrick Gold...The aim of this study is to contribute to better targeting of gold prospecting areas using geospatial information. To this end, 3 mining sites were selected for the study. They are: the Sénoufo belt (Barrick Gold mine), the Yaouré complex (Perseus Mining mine) and the South Fetêkro belt (Bonikro, Hiré and Agbaou mines). For this study, a multi-scale approach was carried out at regional, mine and microscopic levels. At the regional scale, a comparative analysis of 1:200,000 scale geological maps revealed that 3 main lithologies are regularly repeated on and around the various mining sites. These are: undifferentiated volcanics, metagranodiorites and metasiltites dominated by meta-arenites. Most of these lithologies are affected by undifferentiated faults generally oriented NE-SW, N-S, ENE-WSW and WNW-ESE. In addition, gold and manganese occurrences are present on all the sites studied. At the mine scale, radarsat-1 images processing indicate that the main mining sites are generally located near or at the intersection of lineaments-oriented NE-SW or N-S on the one hand and E-W or ENE-WSW or WNW-ESE or again NW-SE on the other. These mines are also located at the interface between zones of high and low lineament density. At the microscopic scale, petrographic studies of undifferentiated volcanic samples from the various sites indicate that they consist of andesites, meta-andesites and tuffs.展开更多
In indirect-driven laser fusion experiments,the movement of the laser absorption layer will distort the radiation uniformity on the capsule.The gold foam has advantages in symmetry control and lowering wall plasma blo...In indirect-driven laser fusion experiments,the movement of the laser absorption layer will distort the radiation uniformity on the capsule.The gold foam has advantages in symmetry control and lowering wall plasma blowoff when used in an inertial confinement fusion(ICF)hohlraum.This work investigates the motion of the laser absorption cutoff position using lowdensity foam gold walls.It is found that the motion of the laser absorption cutoff position can be significantly mitigated through optimal initial low density,tailored to a specific laser shape.For a short square laser pulse,the laser absorption cutoff position remains almost stationary at an initial density of approximately 0.6 g cm^(-3).For a long-shaped laser pulse,the minimal motion of the laser absorption cutoff position is observed at an initial density of about 0.1 g cm^(-3).This approach allows for the adjustment of the symmetry of the hohlraum radiation source.The insights gained from this study serve as a crucial reference for optimizing the hohlraum wall density.展开更多
Size hierarchy is a distinct feature of nanogold-catalysts as it can strongly affect their performance in various reactions. We developed a simple method to generate Au n S m nanoclusters of different sizes by thermal...Size hierarchy is a distinct feature of nanogold-catalysts as it can strongly affect their performance in various reactions. We developed a simple method to generate Au n S m nanoclusters of different sizes by thermal treatment of an Au144(PET)60 (PET: phenylethanethiol) parent cluster. These clusters, deposited on activated carbon, exhibit excellent catalytic performance in the hydrochlorination of acetylene. In-situ ultraviolet laser dissociation high-resolution mass spectrometry of the parent cluster in the presence of acetylene revealed a remarkable cluster size-dependence of acetylene adsorption, which is a crucial step in the hydrochlorination. Systematic density functional theory calculations of the reaction pathways on the differently-sized clusters provide deeper insight into the cluster size dependence of the adsorption energies of the reactants and afforded a scaling relationship between the adsorption energy of acetylene and the co-adsorption energies of the reactants (C_(2)H_(2) and HCl), which could enable a qualitative prediction of the optimal Au n S m cluster for the hydrochlorination of acetylene.展开更多
The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))...The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.52034011 and 52204328)the Science and Technology Innovation Program of Hunan Province(2023RC305)the Changsha Municipal Natural Science Foundation(kq2202085)。
文摘The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs.
文摘Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capacity degradation of these single-crystal cathodes during continuous lithation/delithation cycling remains unclear.Understanding the mapping relationship between the macroscopic electrochemical properties and the material physicochemical properties is crucial.Here,we investigate the correlation between the physical-chemical characteristics,phase transition,and capacity decay using capacity differential curve feature identification and in-situ X-ray spectroscopic imaging.We systematically clarify the dominant mechanism of phase evolution in aging cycling.Appropriately high cut-off voltages can mitigate the slow kinetic and electrochemical properties of single-crystal cathodes.We also find that second-order differential capacity discharge characteristic curves can be used to identify the crystal structure disorder of Ni-rich cathodes.These findings constitute a step forward in elucidating the correlation between the electrochemical extrinsic properties and the physicochemical intrinsic properties and provide new perspectives for failure analysis of layered electrode materials.
基金National Key Research and Development Program of China (2022YFB2502103)National Natural Science Foundation of China (22279107, 22309153)Fundamental Research Funds for the Central Universities (20720230039)。
文摘Single-crystal Nickel-rich layered oxides has been recognized as one of the promising cathodes for nextgeneration lithium batteries on account of their high capacity,while its practical application was hindered by structural instability and slow Li^(+) transfer kinetics.Herein,a surface-to-bulk engineered single-crystal LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(Ni90) cathode,which features W-doped bulk and Li_(2)WO_(4) surface layer,was successfully achieved by a one-step high-valence W^(6+) modification.The as-obtained W-modified Ni90 delivers excellent cycling stability(89.8% capacity retention after 300 cycles at 0.5 C)and rate capability.The enhanced electrochemical performance was ascribed to the doped-W induced stabilized lattice oxygen,reduced Li^(+)/Ni^(2+) mixing and inhibited H2-H3 phase transition in the bulk,and Li_(2)WO_(4) layer generated stabilized cathode/electrolyte interface.In addition,the thinner LiF-rich cathode electrolyte interphase(CEI) on surface and smaller grain size for W-modified Ni90 benefit to its Li^(+) diffusion dynamics.The effect of high-valence W^(6+)on single-crystal Ni-rich cathode was firstly revealed in detail,which deepens the understanding of electrochemical behavior of Ni-rich cathode with high-valence cations modification,and provides clues for design of high-performance layered cathodes.
基金the National Natural Science Foundation of China(52070194,52073309,51902347,51908555)Natural Science Foundation of Hunan Province(2022JJ20069,2020JJ5741).
文摘Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles(EVs)sales,which is considered as the most promising nextgeneration cathode material for lithium-ion batteries(LIBs).However,the lack of deep understanding on the failure mechanism of NM has seriously hindered its application,especially under the harsh condition of high-voltage without sacrifices of reversible capacity.Herein,singlecrystal LiNi_(0.8)Mn_(0.2)O_(2) is selected and compared with traditional LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM),mainly focusing on the failure mechanism of Cofree cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic.Specifically,the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition,which exacerbates the distortion of the lattice,mechanical strain changes and exhibits poor electrochemical performance,especially under the high cutoff voltage.Furthermore,the reaction kinetic of NM is impaired due to the absence of Co element,especially at the single-crystal architecture.Whereas,the negative influence of Li/Ni antisite defect is controllable at low current densities,owing to the attenuated polarization.Notably,Co-free NM can exhibit better safety performance than that of NCM cathode.These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials,providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances.
基金the support from the National Natural Science Foundation of China (No. 61925506)the Natural Science Foundation of Shanghai (No. 20JC1414605)+1 种基金Hangzhou Science and Technology Bureau of Zhejiang Province (No. TD2020002)the Academic/Technology Research Leader Program of Shanghai (23XD1404500)
文摘Lead halide perovskites have attracted considerable attention as potential candidates for high-performance nano/microlasers,owing to their outstanding optical properties.However,the further development of perovskite microlaser arrays(especially based on polycrystalline thin films)produced by the conventional processing techniques is hindered by the chemical instability and surface roughness of the perovskite structures.Herein,we demonstrate a laser patterning of large-scale,highly crystalline perovskite single-crystal films to fabricate reproducible perovskite single-crystal-based microlaser arrays.Perovskite thin films were directly ablated by femtosecond-laser in multiple low-power cycles at a minimum machining line width of approximately 300 nm to realize high-precision,chemically clean,and repeatable fabrication of microdisk arrays.The surface impurities generated during the process can be washed away to avoid external optical loss due to the robustness of the single-crystal film.Moreover,the high-quality,large-sized perovskite single-crystal films can significantly improve the quality of microcavities,thereby realizing a perovskite microdisk laser with narrow linewidth(0.09 nm)and low threshold(5.1µJ/cm2).Benefiting from the novel laser patterning method and the large-sized perovskite single-crystal films,a high power and high color purity laser display with single-mode microlasers as pixels was successfully fabricated.Thus,this study may offer a potential platform for mass-scale and reproducible fabrication of microlaser arrays,and further facilitate the development of highly integrated applications based on perovskite materials.
基金We gratefully acknowledge the financial support from the National Natural Science Foundation of China(52070194,51902347,51908555,and 51822812)Natural Science Foundation of Hunan Province(2020JJ5741)the Graduate Innovation Project of Central South University(2020zzts093).
文摘LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) is extensively researched as one of the most widely used commercially materials for Li-ion batteries at present.However,the poor high-voltage performance(≥4.3 V)with low reversible capacity limits its replacement for LiCoO_(2) in high-end digital field.Herein,three-in-one modification,Na-doping and Al_(2)O_(3)@Li_(3)BO_(3) dual-coating simultaneously,is explored for single-crystalline LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(N-NCM@AB),which exhibits excellent high-voltage performance.N-NCM@AB displays a discharge-specific capacity of 201.8 mAh g^(−1) at 0.2 C with a high upper voltage of 4.6 V and maintains 158.9 mAh g^(−1) discharge capacity at 1 C over 200 cycles with the corresponding capacity retention of 87.8%.Remarkably,the N-NCM@AB||graphite pouch-type full cell retains 81.2% of its initial capacity with high working voltage of 4.4 V over 1600 cycles.More importantly,the fundamental understandings of three-in-one modification on surface morphology,crystal structure,and phase transformation of N-NCM@AB are clearly revealed.The Na+doped into the Li–O slab can enhance the bond energy,stabilize the crystal structure,and facilitate Li+transport.Additionally,the interior surface layer of Li^(+)-ions conductor Li_(3)BO_(3) relieves the charge transfer resistance with surface coating,whereas the outer surface Al_(2)O_(3) coating layer is beneficial for reducing the active materials loss and alleviating the electrode/electrolyte parasite reaction.This three-in-one strategy provides a reference for the further research on the performance attenuation mechanism of NCM,paving a new avenue to boost the high-voltage performance of NCM cathode in Li-ion batteries.
文摘The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model based on Fourier's heat conduction equation,Hooke's law and the Alexander–Hasson equation was developed to analyze the thermal stress damage mechanism involved.The damage morphology of the ablated samples was observed using an optical microscope.The results show that the cooling process has an important influence on fracture in the laser-irradiated region of single-crystal germanium.Fracture is the result of a combination of thermal stress and reduction in local yield strength.
基金supported by National Natural Science Foundation of China(No.12075241)。
文摘A single-crystal diamond detector is fabricated to diagnose 14.1 MeV deuterium-tritium(D-T)fusion neutrons.The size of its diamond film is 4.5 mm×4.5 mm×500μm.This film is sandwiched by a flat,strip-patterned gold electrode.The dark current of this detector is experimentally measured to be lower than 0.1 nA under an electric field of 30 kV cm^(-1).This diamond detector is used to measure D-T fusion neutrons with a flux of about 7.5×10^(5) s^(-1)cm^(-2).The pronounced peak with a central energy of 8.28 MeV characterizing the^(12)C(n,α)~9Be reaction in the neutron energy spectrum is experimentally diagnosed,and the energy resolution is better than 1.69%,which is the best result reported so far using a diamond detector.A clear peak with a central energy of 6.52 MeV characterizing the^(12)C(n,n')3αreaction is also identified with an energy resolution of better than 7.67%.
文摘The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are located in the Kwademen-Baguiomo shear zone. This mineralization, located only a few kilometers from the Kwademen gold deposit, is uncharacterized and, together with the latter, could constitute a gold potential capable of being economically exploitable. It is in this sense that this work is carried out with a view to characterizing the gold mineralization of the Baguiomo gold panning site. To carry out this work, we have made direct field measurements, combined with microstructures, and combined all this with data from geochemical rock analysis of the basalts that are the main host formations. Geochemical data show that tholeitic basalts formed from a mantle plume that was emplaced in an oceanic plateau context. Calc-alkaline basalts and andesites are comparable to Paleoproterozoic tholeitic basalts (PTH3), which are slightly enriched in light rare earths. Fertility tests show that these basalts concentrate between 3 and 6 ppb of gold at the time of accretion, which is sufficient for remobilization of this primary gold during the Eburnian orogeny to yield a deposit of around 4 - 5 Moz. Gold mineralization is associated with pyrite crystals when the latter are disseminated in the rock mass, whereas it is associated with hematite in quartz veins concordant with S1 shear deformation. It is mainly the pyrite crystals in the pressure shadows that contain the gold grains, whose development would be synchronous with micro-shear zone reactivation during the first phase of D1<sub>B</sub> deformation. The second phase of D2<sub>B</sub> deformation, which is a crenulation or fracture schistosity, does not significantly affect the shear deformation that controls mineralization.
基金supported by the National Natural Science Foundation of China(Nos.42172093,42202075,and 42302108)the Key Research and Development Project of Xinjiang(No.2023B03015)+1 种基金the Uygur Autonomous Region Tianchi Talent Project,and the Natural Science Foundation of Xinjiang(No.2022D01A344)China Scholarship Council(202304180004)。
文摘The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated with the Anqi fault.This deposit exhibits characteristics typical of a fault-controlled lode system,and the orebodies consist of auriferous quartz veins and altered wall rocks within Early Carboniferous volcano-sedimentary rocks.Three stages of mineralization have been identified in the Hatu gold deposit:the early pyrite-albite-quartz stage,the middle polymetallic sulfides-ankerite-quartz stage,and late quartz-calcite stage.The sulfur isotopic values of pyrite and arsenopyrite vary in a narrow range from-0.8‰to1.3‰and an average of 0.4‰,the near-zeroδ~(34)S values implicate the thorough homogenization of the sulfur isotopes during the metamorphic dehydration of the Early Carboniferous volcano-sedimentary rocks.Lead isotopic results of pyrite and arsenopyrite(^(206)Pb/^(204)Pb=17.889-18.447,^(207)Pb/^(204)Pb=15.492-15.571,^(208)Pb/^(204)Pb=37.802-38.113)are clustered between orogenic and mantle/upper crust lines,indicating that the lead was mainly sourced from the hostrocks within the Early Carboniferous Tailegula Formation.The characteristics of S and Pb isotopes suggest that the ore-forming metals of the Hatu orogenic gold deposit are of metamorphogenic origin,associated with the continental collision between the Yili-Kazakhstan and Siberian plates during the Late Carboniferous.
文摘Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.
基金supported by Records of China’s Mineral Geology from the China Geological Survey(DD20190379)the State Key Program of National Natural Science Foundation of China(41730426)the 111 Project of the Ministry of Science and Technology(BP0719021)。
文摘1.Objective The West Qinling Orogen extends east-west over 1500 km and is endowed with dozens of large-super large scale gold deposits.The Zaozigou gold deposit has a proven reserve of 134 t with an average grade of 3.08 g/t thus is one of the largest deposits in the West Qinling Orogen.However,whether the fluid type is metamorphic or magmatichydrothermal and ore-formation processes of the Zaozigou gold deposit are equivocal.Scheelite is a ubiquitous accessory mineral in geologically diverse ore-deposit types and attested to be a strong indicator of ore-forming conditions and oredeposit genesis.
基金support from several sources,including the Backbone Teacher Training Program(10912-SJGG2021-04233)the Teaching Reform Project of Chengdu University of Technology(JG2130131)+1 种基金the University-Industry Collaborative Education Project,Ministry of Education,China(22097130210756)National Natural Science Foundation of China(42272129).
文摘The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,west of the Baimashan granitic batholith.In order to discern the characteristics of the ore-formingfluids,the underlying mineralization processes,and establish a foundation for the origin of the Yueguang gold depositfluid inclusion micro-thermometry,as well as quartz hydrogen and oxygen isotope analysis,have been carried out on samples obtained from various stages of mineralization.The hydrothermal miner-alization stages within the Yueguang gold deposit can be categorized into three stages:(i)the barren,pre-ore quartz-pyrite stage(Stage Ⅰ),the quartz-pyrite-gold stage(Stage Ⅱ),and the post-ore quartz-carbonate stage(Stage Ⅲ),with the second stage being the main mineralization stage.Thefluid inclusions identified in samples from the main min-eralization stage can predominantly be described with the NaCl–H_(2)O and CO_(2)–NaCl–H_(2)O systems.These inclusions display homogenization temperatures ranging from 158.8 to 334.9℃,and thefluid salinity ranges from 0.3%to 4.0%(wt.%NaCl equiv.).Laser Raman spectroscopy analysis of individual inclusions further reveals the presence of gas-phases such as CO_(2),CH_(4),and N_(2).Isotopic analysis indicatesδ^(18)Ofluid values ranging from 3.95 to 6.7‰ and δDH_(2)O values ranging from-71.9 to-55.7‰.These results indi-cate that the ore-formingfluid of the Yueguang gold deposit belongs to metamorphic hydrothermalfluids of middle-low temperature and low salinity.In the process of ore formation,gold is transported in the form of Au(HS)2-complexes,with gold deposition being driven byfluid immiscibility.Therefore,the Yueguang gold deposit is categorized as an orogenic gold deposit dominated by metamorphic hydrother-malfluid.It may become a new target for gold exploration in the Baimashan region,central Hunan Province.
文摘The finite deformation structures recorded in the Essakane area, located in the northeast corner of Burkina Faso, highlight three major compressive deformation phases, successively named D1, D2, and D3. The D1 event phase, trending NE-SW, is characterised by P1 folds and S1 axial plane schistosity. The D2 phase trending NW-SE is characterised by folds P2, schistosity (S2) and shear (C) planes. And the D3 phase trending NNE-SSW to N-S is characterised by P3 folds, crenulation microfolds and S3 spaced schistosity. It has also been noted that gold mineralizations are mainly hosted in quartz, carbonate, pyrite, and arsenopyrite veins. Structural interpretation indicates that these veins are organized into lenticular bodies that were formed during the first two deformation phases (D1 and D2). This suggests a strong structural control typical of orogenic gold concentrations.
基金the Brazilian agencies FAPESP(Nos.2018/10172-7 and 2019/18828-1)CAPES(Finance Code 001),CNPq(No.303580/2021-6)+2 种基金the National Institute of Photonics—INFO(INCTs program)the Universidade de Sao Paulo(USP)Ministère de L’Enseignement Supérieur de la Recherche et de l’Innovation(France)for financial support。
文摘Homogeneous gold nanoparticles were synthesized under atmospheric pressure using a nonthermal helium plasma jet in a single-step process.A current power supply was used to generate the plasma discharge rich in diverse reactive species.These species induce rapid chemical reactions responsible for the reduction of the gold salts upon contact with the liquid solution.In this study,spherical and monodispersed gold nanoparticles were obtained within 5 min of plasma exposure using a solution containing gold(Ⅲ)chloride hydrate(HAuCl_(4))as a precursor and polyvinylpyrrolidone(PVP)as a capping agent to inhibit agglomerations.The formation of these metal nanoparticles was initially perceptible through a visible change in the sample's color,transitioning from light yellow to a red/pink color.This was subsequently corroborated by UVvis spectroscopy,which revealed an optical absorption in the 520-550 nm range for Au NPs,corresponding to the surface plasmon resonance(SPR)band.An investigation into the impact of various parameters,including plasma discharge duration,precursor and capping agent concentrations,was carried out to optimize conditions for the formation of well-separated,spherical gold nanoparticles.Dynamic light scattering(DLS)was used to measure the size of these nanoparticles,transmission electron microscopy(TEM)was used to observe their morphology and X-ray diffraction(XRD)was also employed to determine their crystallographic structure.The results confirm that homogeneous spherical gold nanoparticles with an average diameter of 13 nm can be easily synthesized through a rapid,straightforward,and environmentally friendly approach utilizing a helium atmospheric pressure plasma.
文摘The aim of this study is to contribute to better targeting of gold prospecting areas using geospatial information. To this end, 3 mining sites were selected for the study. They are: the Sénoufo belt (Barrick Gold mine), the Yaouré complex (Perseus Mining mine) and the South Fetêkro belt (Bonikro, Hiré and Agbaou mines). For this study, a multi-scale approach was carried out at regional, mine and microscopic levels. At the regional scale, a comparative analysis of 1:200,000 scale geological maps revealed that 3 main lithologies are regularly repeated on and around the various mining sites. These are: undifferentiated volcanics, metagranodiorites and metasiltites dominated by meta-arenites. Most of these lithologies are affected by undifferentiated faults generally oriented NE-SW, N-S, ENE-WSW and WNW-ESE. In addition, gold and manganese occurrences are present on all the sites studied. At the mine scale, radarsat-1 images processing indicate that the main mining sites are generally located near or at the intersection of lineaments-oriented NE-SW or N-S on the one hand and E-W or ENE-WSW or WNW-ESE or again NW-SE on the other. These mines are also located at the interface between zones of high and low lineament density. At the microscopic scale, petrographic studies of undifferentiated volcanic samples from the various sites indicate that they consist of andesites, meta-andesites and tuffs.
基金supported by the Presidential Foundation of China Academy of Engineering Physics (No. YZJJLX 2018011)National Natural Science Foundation of China (Nos. 11775204, 11734013, 12105269 and 12004351)
文摘In indirect-driven laser fusion experiments,the movement of the laser absorption layer will distort the radiation uniformity on the capsule.The gold foam has advantages in symmetry control and lowering wall plasma blowoff when used in an inertial confinement fusion(ICF)hohlraum.This work investigates the motion of the laser absorption cutoff position using lowdensity foam gold walls.It is found that the motion of the laser absorption cutoff position can be significantly mitigated through optimal initial low density,tailored to a specific laser shape.For a short square laser pulse,the laser absorption cutoff position remains almost stationary at an initial density of approximately 0.6 g cm^(-3).For a long-shaped laser pulse,the minimal motion of the laser absorption cutoff position is observed at an initial density of about 0.1 g cm^(-3).This approach allows for the adjustment of the symmetry of the hohlraum radiation source.The insights gained from this study serve as a crucial reference for optimizing the hohlraum wall density.
基金financial support by the National Natural Science Foundation of China(No.22172167).
文摘Size hierarchy is a distinct feature of nanogold-catalysts as it can strongly affect their performance in various reactions. We developed a simple method to generate Au n S m nanoclusters of different sizes by thermal treatment of an Au144(PET)60 (PET: phenylethanethiol) parent cluster. These clusters, deposited on activated carbon, exhibit excellent catalytic performance in the hydrochlorination of acetylene. In-situ ultraviolet laser dissociation high-resolution mass spectrometry of the parent cluster in the presence of acetylene revealed a remarkable cluster size-dependence of acetylene adsorption, which is a crucial step in the hydrochlorination. Systematic density functional theory calculations of the reaction pathways on the differently-sized clusters provide deeper insight into the cluster size dependence of the adsorption energies of the reactants and afforded a scaling relationship between the adsorption energy of acetylene and the co-adsorption energies of the reactants (C_(2)H_(2) and HCl), which could enable a qualitative prediction of the optimal Au n S m cluster for the hydrochlorination of acetylene.
基金Project(52274343)supported by the National Natural Science Foundation of ChinaProjects(2023YFC3903900,2023YFC3903904)supported by the National Key R&D Program of China。
文摘The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises.