Organic–inorganic single-crystalline perovskites have attracted significant attentions due to their exceptional progress in intrinsic properties' investigation and applications in photovoltaics and optoelectronics. ...Organic–inorganic single-crystalline perovskites have attracted significant attentions due to their exceptional progress in intrinsic properties' investigation and applications in photovoltaics and optoelectronics. In this study, the large perovskite CH3NH3PbI3 single crystal with the largest length of 80 mm was prepared through the method of inverse-temperature crystallization. Meanwhile, the mass production of integrate photodetectors have been fabricated on the single-crystalline wafer and the photoresponse performances were investigated. The results show that the single-crystalline photodetectors have broad spectrum response to 900 nm, rapid response speed(〈40 μs) and excellent stability. These findings are of great importance for future promising perovskite single crystalline for integrated photoelectronic application.展开更多
基金support from the National Key Research and Development Program of China(no.2016YFA0202403)National Natural Science Foundation of China(nos.61604091/61674098)+3 种基金the 111 Project(B14041)the National University Research Fund(grant nos.GK261001009,GK201603107)Changjiang Scholar and Innovative Research Team(IRT_14R33)the Chinese National 1000-talent-plan program(1110010341)
文摘Organic–inorganic single-crystalline perovskites have attracted significant attentions due to their exceptional progress in intrinsic properties' investigation and applications in photovoltaics and optoelectronics. In this study, the large perovskite CH3NH3PbI3 single crystal with the largest length of 80 mm was prepared through the method of inverse-temperature crystallization. Meanwhile, the mass production of integrate photodetectors have been fabricated on the single-crystalline wafer and the photoresponse performances were investigated. The results show that the single-crystalline photodetectors have broad spectrum response to 900 nm, rapid response speed(〈40 μs) and excellent stability. These findings are of great importance for future promising perovskite single crystalline for integrated photoelectronic application.