Metal objects in X-ray computed tomography can cause severe artifacts.The state-of-the-art metal artifact reduction methods are in the sinogram inpainting category and are iterative methods.This paper proposes a proje...Metal objects in X-ray computed tomography can cause severe artifacts.The state-of-the-art metal artifact reduction methods are in the sinogram inpainting category and are iterative methods.This paper proposes a projectiondomain algorithm to reduce the metal artifacts.In this algorithm,the unknowns are the metal-affected projections,while the objective function is set up in the image domain.The data fidelity term is not utilized in the objective function.The objective function of the proposed algorithm consists of two terms:the total variation of the metalremoved image and the energy of the negative-valued pixels in the image.After the metal-affected projections are modified,the final image is reconstructed via the filtered backprojection algorithm.The feasibility of the proposed algorithm has been verified by real experimental data.展开更多
When the object contains metals,its x-ray computed tomography(CT)images are normally affected by streaking artifacts.These artifacts are mainly caused by the x-ray beam hardening effects,which deviate the measurements...When the object contains metals,its x-ray computed tomography(CT)images are normally affected by streaking artifacts.These artifacts are mainly caused by the x-ray beam hardening effects,which deviate the measurements from their true values.One interesting observation of the metal artifacts is that certain regions of the metal artifacts often appear as negative pixel values.Our novel idea in this paper is to set up an objective function that restricts the negative pixel values in the image.We must point out that the naïve idea of setting the negative pixel values in the reconstructed image to zero does not give the same result.This paper proposes an iterative algorithm to optimize this objective function,and the unknowns are the metal affected projections.Once the metal affected projections are estimated,the filtered backprojection algorithm is used to reconstruct the final image.This paper applies the proposed algorithm to some airport bag CT scans.The bags all contain unknown metallic objects.The metal artifacts are effectively reduced by the proposed algorithm.展开更多
目的 比较能谱CT金属伪影去除算法及虚拟单能图像重建与传统迭代重建在减少脊柱金属植入物伪影的差异。方法 56例脊柱矫形术接受金属植入物行标准能谱CT检查,包括常规迭代重建、金属伪影去除算法和虚拟单能图像重建。测量衰减系数(HU)...目的 比较能谱CT金属伪影去除算法及虚拟单能图像重建与传统迭代重建在减少脊柱金属植入物伪影的差异。方法 56例脊柱矫形术接受金属植入物行标准能谱CT检查,包括常规迭代重建、金属伪影去除算法和虚拟单能图像重建。测量衰减系数(HU)和噪声(SD),以计算椎旁肌和椎管的信噪比。两名放射科医师独立评价图像质量和伪影减少程度。结果 与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像显著降低低密度伪影及高密度伪影。与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像椎旁肌(34.6±17.0HU vs. 26.1±13.5HU及34.6±17.0HU vs. 27.0±14.2)和椎管(102.5±60.1HU vs. 72.1±39.3HU及102.5±60.1HU vs. 60.1±38.0HU, P 均<0.05)的噪声伪影减少。观察者间评价主观图像质量的一致性良好,ICC=0.74。在主观图像质量评价中,金属伪影去除算法和高keV虚拟单能图像上表现出伪影减少分别为44/56例(78.6%)、48/56例(85.7%)。结论 能谱CT金属伪影去除算法和高keV虚拟单能图像重建上客观及主观伪像均减少,金属伪影去除算法联合虚拟单能图像的组合可能有希望进一步减少伪影。展开更多
基金This research is partially supported by NIH,No.R15EB024283.
文摘Metal objects in X-ray computed tomography can cause severe artifacts.The state-of-the-art metal artifact reduction methods are in the sinogram inpainting category and are iterative methods.This paper proposes a projectiondomain algorithm to reduce the metal artifacts.In this algorithm,the unknowns are the metal-affected projections,while the objective function is set up in the image domain.The data fidelity term is not utilized in the objective function.The objective function of the proposed algorithm consists of two terms:the total variation of the metalremoved image and the energy of the negative-valued pixels in the image.After the metal-affected projections are modified,the final image is reconstructed via the filtered backprojection algorithm.The feasibility of the proposed algorithm has been verified by real experimental data.
基金This research is partially supported by NIH,No.R15EB024283.
文摘When the object contains metals,its x-ray computed tomography(CT)images are normally affected by streaking artifacts.These artifacts are mainly caused by the x-ray beam hardening effects,which deviate the measurements from their true values.One interesting observation of the metal artifacts is that certain regions of the metal artifacts often appear as negative pixel values.Our novel idea in this paper is to set up an objective function that restricts the negative pixel values in the image.We must point out that the naïve idea of setting the negative pixel values in the reconstructed image to zero does not give the same result.This paper proposes an iterative algorithm to optimize this objective function,and the unknowns are the metal affected projections.Once the metal affected projections are estimated,the filtered backprojection algorithm is used to reconstruct the final image.This paper applies the proposed algorithm to some airport bag CT scans.The bags all contain unknown metallic objects.The metal artifacts are effectively reduced by the proposed algorithm.
文摘目的 比较能谱CT金属伪影去除算法及虚拟单能图像重建与传统迭代重建在减少脊柱金属植入物伪影的差异。方法 56例脊柱矫形术接受金属植入物行标准能谱CT检查,包括常规迭代重建、金属伪影去除算法和虚拟单能图像重建。测量衰减系数(HU)和噪声(SD),以计算椎旁肌和椎管的信噪比。两名放射科医师独立评价图像质量和伪影减少程度。结果 与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像显著降低低密度伪影及高密度伪影。与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像椎旁肌(34.6±17.0HU vs. 26.1±13.5HU及34.6±17.0HU vs. 27.0±14.2)和椎管(102.5±60.1HU vs. 72.1±39.3HU及102.5±60.1HU vs. 60.1±38.0HU, P 均<0.05)的噪声伪影减少。观察者间评价主观图像质量的一致性良好,ICC=0.74。在主观图像质量评价中,金属伪影去除算法和高keV虚拟单能图像上表现出伪影减少分别为44/56例(78.6%)、48/56例(85.7%)。结论 能谱CT金属伪影去除算法和高keV虚拟单能图像重建上客观及主观伪像均减少,金属伪影去除算法联合虚拟单能图像的组合可能有希望进一步减少伪影。