A reduction in the track width of magnetic recording systems results in a welcome increase in Areal Density(AD),but can severely deteriorate system performance in the unfortunate appearance of extreme Inter-Track Inte...A reduction in the track width of magnetic recording systems results in a welcome increase in Areal Density(AD),but can severely deteriorate system performance in the unfortunate appearance of extreme Inter-Track Interference(ITI).The effect of severe ITI may be mitigated by using coding schemes.In this paper,therefore,we present a rate-5/62-Dimensional(2D)modulation code based on a proposed Single-Reader/Two-track Reading(SRTR)technique to cope with this serious problem in staggered Bit-Pattemed Magnetic Recording(BPMR)systems.We then evaluate the Bit-Error Rate(BER)performance of the proposed system in the presence of media noises,e.g.,position and size fluctuations.Our simulation results indicate that,at the same User Density(UD),the proposed system performs better than an uncoded system by about 1.0 dB at the BER of 105 and is also superior to the conventional recording system.展开更多
基金This work was patially supported by the Thailand Research Fund under the grant number RSA6080051,College of Advanced Manufacturing Innovation(AMD),and King Mongkut's Institute of Technology Ladkrabang(KMIIL),Thailand.
文摘A reduction in the track width of magnetic recording systems results in a welcome increase in Areal Density(AD),but can severely deteriorate system performance in the unfortunate appearance of extreme Inter-Track Interference(ITI).The effect of severe ITI may be mitigated by using coding schemes.In this paper,therefore,we present a rate-5/62-Dimensional(2D)modulation code based on a proposed Single-Reader/Two-track Reading(SRTR)technique to cope with this serious problem in staggered Bit-Pattemed Magnetic Recording(BPMR)systems.We then evaluate the Bit-Error Rate(BER)performance of the proposed system in the presence of media noises,e.g.,position and size fluctuations.Our simulation results indicate that,at the same User Density(UD),the proposed system performs better than an uncoded system by about 1.0 dB at the BER of 105 and is also superior to the conventional recording system.