Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-...Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities. XRCC1^-/- mouse fibroblasts are most hypersensitive to agents that produce DNA lesions repaired by monofunctional glycosylase-initiated BER and that result in formation of indirect SSBs. A requirement for the deoxyribose phosphate lyase activity of DNA polymerase β (pol β) is specific to this pathway, whereas pol β is implicated in gap-filling during repair of many types of SSBs. Elevated levels of strand breaks, and diminished repair, have been demonstrated in MMS- treated XRCC1^-/-, and to a lesser extent in pol β^-/- cell lines, compared with wild-type cells. Thus a strong correlation is observed between cellular sensitivity to MMS and the ability of cells to repair MMS-induced damage. Exposure of wild-type and polβ^-/- cells to an inhibitor of PARP activity dramatically potentiates MMS-induced cytotoxicity. XRCC1^-/- cells are also sensitized by PARP inhibition demonstrating that PARP-mediated poly(ADP-ribosyl)ation plays a role in modulation of cytotoxicity beyond recruitment of XRCC 1 to sites of DNA damage.展开更多
DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB r...DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little is known regarding the key players of the HR repair pathway in oocytes. Here, we identified oocyte-specific gene Ooep as a novel key component of the HR repair pathway in mouse oocytes. OOEP was required for efficient ataxia telangiectasia mutated (ATM) kinase activation and Rad51 recombinase (RAD51) focal accumulation at DNA DSBs. Ooep null oocytes were defective in DNA DSB repair and prone to apoptosis upon exogenous DNA damage insults. Moreover, Ooep null oocytes exhibited delayed meiotic maturation. Therefore, OOEP played roles in preserving oocyte quantity and quality by maintaining genome stability. Ooep expression decreased with the advance of maternal age, suggesting its involvement in maternal aging.展开更多
BACKGROUND Poly(ADP-ribose)polymerase inhibitors(PARPis)are approved as first-line therapies for breast cancer gene(BRCA)-positive,human epidermal growth factor receptor 2-negative locally advanced or metastatic breas...BACKGROUND Poly(ADP-ribose)polymerase inhibitors(PARPis)are approved as first-line therapies for breast cancer gene(BRCA)-positive,human epidermal growth factor receptor 2-negative locally advanced or metastatic breast cancer.They are also effective for new and recurrent ovarian cancers that are BRCA-or homologous recombination deficiency(HRD)-positive.However,data on these mutations and PARPi use in the Middle East are limited.AIM To assess BRCA/HRD prevalence and PARPi use in patients in the Middle East with breast/ovarian cancer.METHODS This was a single-center retrospective study of 57 of 472 breast cancer patients tested for BRCA mutations,and 25 of 65 ovarian cancer patients tested for HRD.These adult patients participated in at least four visits to the oncology service at our center between August 2021 and May 2023.Data were summarized using descriptive statistics and compared using counts and percentages.Response to treatment was assessed using Response Evaluation Criteria in Solid Tumors criteria.RESULTS Among the 472 breast cancer patients,12.1%underwent BRCA testing,and 38.5%of 65 ovarian cancer patients received HRD testing.Pathogenic mutations were found in 25.6%of the tested patients:26.3%breast cancers had germline BRCA(gBRCA)mutations and 24.0%ovarian cancers showed HRD.Notably,40.0%of gBRCA-positive breast cancers and 66.0%of HRD-positive ovarian cancers were Middle Eastern and Asian patients,respectively.PARPi treatment was used in 5(33.3%)gBRCA-positive breast cancer patients as first-line therapy(n=1;7-months progression-free),for maintenance(n=2;>15-months progression-free),or at later stages due to compliance issues(n=2).Four patients(66.6%)with HRD-positive ovarian cancer received PARPi and all remained progression-free.CONCLUSION Lower testing rates but higher BRCA mutations in breast cancer were found.Ethnicity reflected United Arab Emirates demographics,with breast cancer in Middle Eastern and ovarian cancer in Asian patients.展开更多
Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides c...Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical support for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modalities of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.展开更多
In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage hap...In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage happens in pipes. This paper studies the effects of repairing strategies on the failure probability of the pipe systems in process industries based on the time-average fault tree approach, especially the in-operation repairing strategies including pressured in-operation repairing activities. The fault tree model can predict the effect of different repairing plans on the pipe failure probability, which is significant to the optimization of the repairing plans. At first pipes are distinguished into four states in this model, i.e., successive state, flaw state, leakage state and failure state. Then the fault tree approach, which is usually applied in the studies of dynamic equipment, is adopted to model the pipe failure. Moreover, the effect of pressured in-operation repairing is also considered in the model. In addition, this paper proposes a series of time-average parameters of the fault tree model, all of which are used to calculate node parameters of the fault tree model. At last, a practical case is calculated based on the fault tree model in a repairing activity of pipe thinning.展开更多
Objective To explore if strand breaks of DNA in human early chorionic villus cells in uterus were induced by diagnostic ultrasound and to evaluate the method used for detection of single-stranded breaks and double-str...Objective To explore if strand breaks of DNA in human early chorionic villus cells in uterus were induced by diagnostic ultrasound and to evaluate the method used for detection of single-stranded breaks and double-stranded breaks in human DNA. Methods 60 normal pregnant women aged 20-30, who underwent artificial abortion during 6-8 weeks of gestation, were randomly divided into 2 experimental groups: All 30 cases were exposed to diagnostic ultrasound in uterus for 10 minutes, and 24 hours later chorionic villi were extracted; the other 30 cases were taken as the control group. Single-stranded DNA and double-stranded DNA in villus cells in all cases were isolated by the alkaline unwinding combined with hydroxylapatite chromatography, and were quantitatively detected using 32 P-labeled Alu probe for dot-blotting hybridization. Results There was no significant difference in quantity and percentage in single-stranded DNA and double-stranded DNA between 2 groups (P>0.05). 32 P-Alu probe could only hybridize with human DNA, and could detect DNA isolated from as few as 2.5×10 3 chorionic villus cells and 0.45ng DNA in human leukocytes. Conclusion The results suggested that there were no DNA strand damages in human chorionic villus cells when the uterus was exposed to diagnostic ultrasound for 10 minutes. The method,^(32)P-Alu probe for dot-blotting hybridization, was even more specific, sensitive and accurate than conventional approaches.展开更多
We have selected four mouse cell mutantshypersensitive to the lethal effect ofionizing radiation.They show cross-sensitivity to bleomycin and otherchemicals but not to ultraviolet light.
The run-around of Xiagou subincline bottom is a soft rock roadway, its floor has heaved over 1 m. ln this paper, by electronic microscope scanning and X-ray diffraction analy-sis, the components of the soft rock are d...The run-around of Xiagou subincline bottom is a soft rock roadway, its floor has heaved over 1 m. ln this paper, by electronic microscope scanning and X-ray diffraction analy-sis, the components of the soft rock are determined and the breaking mechanism of roadway is analyzed as well. Through finite element calculation and simulation model test, the reasonable repair support method is put forward.展开更多
Radiotherapy is a part of the front-line treatment regime for many cancers. The mechanisms of radiation-induced effects in cancers mainly involves double-strand breaks (DBS) which plays very important role in maintain...Radiotherapy is a part of the front-line treatment regime for many cancers. The mechanisms of radiation-induced effects in cancers mainly involves double-strand breaks (DBS) which plays very important role in maintaining the stability of gene. As DNA repair gene breast cancer 1 (BRCA1) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) can act to maintain genetic stability though two distinct and complementary mechanisms for DNA DSB repair-homologous recombination (HR) and non-homologous end joining (NHEJ). Therefor, BRCA1 and DNA-PKcs are closely associated with radiation sensitivity, which means that they may be used as a useful tool to predict radio sensitivity in human tumour cells.展开更多
Accumulating evidence indicates that ataxia-telangiectasia mutated kinase is critical for maintaining cellular homeostasis and that it has both nuclear and cytoplasmic functions.However,the functions of ataxia-telangi...Accumulating evidence indicates that ataxia-telangiectasia mutated kinase is critical for maintaining cellular homeostasis and that it has both nuclear and cytoplasmic functions.However,the functions of ataxia-telangiectasia mutated that when lost lead to cerebellar degeneration are still unknown.In this review,we first describe the role of ataxia-telangiectasia mutated in cerebellar pathology.In addition to its canonical nuclear functions in DNA damage response circuits,ataxia-telangiectasia mutated functions in various cytoplasmic and mitochondrial processes that are critically important for cellular homeostasis.We discuss these functions with a focus on the role of ataxia-telangiectasia mutated in maintaining the homeostatic redox state.Finally,we describe the unique functions of ataxia-telangiectasia mutated in various types of neuronal and glial cells including cerebellar granule neurons,astrocytes,and microglial cells.展开更多
文摘Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities. XRCC1^-/- mouse fibroblasts are most hypersensitive to agents that produce DNA lesions repaired by monofunctional glycosylase-initiated BER and that result in formation of indirect SSBs. A requirement for the deoxyribose phosphate lyase activity of DNA polymerase β (pol β) is specific to this pathway, whereas pol β is implicated in gap-filling during repair of many types of SSBs. Elevated levels of strand breaks, and diminished repair, have been demonstrated in MMS- treated XRCC1^-/-, and to a lesser extent in pol β^-/- cell lines, compared with wild-type cells. Thus a strong correlation is observed between cellular sensitivity to MMS and the ability of cells to repair MMS-induced damage. Exposure of wild-type and polβ^-/- cells to an inhibitor of PARP activity dramatically potentiates MMS-induced cytotoxicity. XRCC1^-/- cells are also sensitized by PARP inhibition demonstrating that PARP-mediated poly(ADP-ribosyl)ation plays a role in modulation of cytotoxicity beyond recruitment of XRCC 1 to sites of DNA damage.
基金supported by the National Key Research and Development Program of China(2017YFC1001102)National Natural Science Foundation of China(81760507)
文摘DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little is known regarding the key players of the HR repair pathway in oocytes. Here, we identified oocyte-specific gene Ooep as a novel key component of the HR repair pathway in mouse oocytes. OOEP was required for efficient ataxia telangiectasia mutated (ATM) kinase activation and Rad51 recombinase (RAD51) focal accumulation at DNA DSBs. Ooep null oocytes were defective in DNA DSB repair and prone to apoptosis upon exogenous DNA damage insults. Moreover, Ooep null oocytes exhibited delayed meiotic maturation. Therefore, OOEP played roles in preserving oocyte quantity and quality by maintaining genome stability. Ooep expression decreased with the advance of maternal age, suggesting its involvement in maternal aging.
文摘BACKGROUND Poly(ADP-ribose)polymerase inhibitors(PARPis)are approved as first-line therapies for breast cancer gene(BRCA)-positive,human epidermal growth factor receptor 2-negative locally advanced or metastatic breast cancer.They are also effective for new and recurrent ovarian cancers that are BRCA-or homologous recombination deficiency(HRD)-positive.However,data on these mutations and PARPi use in the Middle East are limited.AIM To assess BRCA/HRD prevalence and PARPi use in patients in the Middle East with breast/ovarian cancer.METHODS This was a single-center retrospective study of 57 of 472 breast cancer patients tested for BRCA mutations,and 25 of 65 ovarian cancer patients tested for HRD.These adult patients participated in at least four visits to the oncology service at our center between August 2021 and May 2023.Data were summarized using descriptive statistics and compared using counts and percentages.Response to treatment was assessed using Response Evaluation Criteria in Solid Tumors criteria.RESULTS Among the 472 breast cancer patients,12.1%underwent BRCA testing,and 38.5%of 65 ovarian cancer patients received HRD testing.Pathogenic mutations were found in 25.6%of the tested patients:26.3%breast cancers had germline BRCA(gBRCA)mutations and 24.0%ovarian cancers showed HRD.Notably,40.0%of gBRCA-positive breast cancers and 66.0%of HRD-positive ovarian cancers were Middle Eastern and Asian patients,respectively.PARPi treatment was used in 5(33.3%)gBRCA-positive breast cancer patients as first-line therapy(n=1;7-months progression-free),for maintenance(n=2;>15-months progression-free),or at later stages due to compliance issues(n=2).Four patients(66.6%)with HRD-positive ovarian cancer received PARPi and all remained progression-free.CONCLUSION Lower testing rates but higher BRCA mutations in breast cancer were found.Ethnicity reflected United Arab Emirates demographics,with breast cancer in Middle Eastern and ovarian cancer in Asian patients.
文摘Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical support for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modalities of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.
基金Supported by National Science and Technology Pillar Program in the Twelfth Five-Year Plan (No. 2011BAK06B02)National Basic Research Program of China ("973" Program, No. 2012CB026000)
文摘In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage happens in pipes. This paper studies the effects of repairing strategies on the failure probability of the pipe systems in process industries based on the time-average fault tree approach, especially the in-operation repairing strategies including pressured in-operation repairing activities. The fault tree model can predict the effect of different repairing plans on the pipe failure probability, which is significant to the optimization of the repairing plans. At first pipes are distinguished into four states in this model, i.e., successive state, flaw state, leakage state and failure state. Then the fault tree approach, which is usually applied in the studies of dynamic equipment, is adopted to model the pipe failure. Moreover, the effect of pressured in-operation repairing is also considered in the model. In addition, this paper proposes a series of time-average parameters of the fault tree model, all of which are used to calculate node parameters of the fault tree model. At last, a practical case is calculated based on the fault tree model in a repairing activity of pipe thinning.
文摘Objective To explore if strand breaks of DNA in human early chorionic villus cells in uterus were induced by diagnostic ultrasound and to evaluate the method used for detection of single-stranded breaks and double-stranded breaks in human DNA. Methods 60 normal pregnant women aged 20-30, who underwent artificial abortion during 6-8 weeks of gestation, were randomly divided into 2 experimental groups: All 30 cases were exposed to diagnostic ultrasound in uterus for 10 minutes, and 24 hours later chorionic villi were extracted; the other 30 cases were taken as the control group. Single-stranded DNA and double-stranded DNA in villus cells in all cases were isolated by the alkaline unwinding combined with hydroxylapatite chromatography, and were quantitatively detected using 32 P-labeled Alu probe for dot-blotting hybridization. Results There was no significant difference in quantity and percentage in single-stranded DNA and double-stranded DNA between 2 groups (P>0.05). 32 P-Alu probe could only hybridize with human DNA, and could detect DNA isolated from as few as 2.5×10 3 chorionic villus cells and 0.45ng DNA in human leukocytes. Conclusion The results suggested that there were no DNA strand damages in human chorionic villus cells when the uterus was exposed to diagnostic ultrasound for 10 minutes. The method,^(32)P-Alu probe for dot-blotting hybridization, was even more specific, sensitive and accurate than conventional approaches.
文摘We have selected four mouse cell mutantshypersensitive to the lethal effect ofionizing radiation.They show cross-sensitivity to bleomycin and otherchemicals but not to ultraviolet light.
文摘The run-around of Xiagou subincline bottom is a soft rock roadway, its floor has heaved over 1 m. ln this paper, by electronic microscope scanning and X-ray diffraction analy-sis, the components of the soft rock are determined and the breaking mechanism of roadway is analyzed as well. Through finite element calculation and simulation model test, the reasonable repair support method is put forward.
文摘Radiotherapy is a part of the front-line treatment regime for many cancers. The mechanisms of radiation-induced effects in cancers mainly involves double-strand breaks (DBS) which plays very important role in maintaining the stability of gene. As DNA repair gene breast cancer 1 (BRCA1) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) can act to maintain genetic stability though two distinct and complementary mechanisms for DNA DSB repair-homologous recombination (HR) and non-homologous end joining (NHEJ). Therefor, BRCA1 and DNA-PKcs are closely associated with radiation sensitivity, which means that they may be used as a useful tool to predict radio sensitivity in human tumour cells.
文摘Accumulating evidence indicates that ataxia-telangiectasia mutated kinase is critical for maintaining cellular homeostasis and that it has both nuclear and cytoplasmic functions.However,the functions of ataxia-telangiectasia mutated that when lost lead to cerebellar degeneration are still unknown.In this review,we first describe the role of ataxia-telangiectasia mutated in cerebellar pathology.In addition to its canonical nuclear functions in DNA damage response circuits,ataxia-telangiectasia mutated functions in various cytoplasmic and mitochondrial processes that are critically important for cellular homeostasis.We discuss these functions with a focus on the role of ataxia-telangiectasia mutated in maintaining the homeostatic redox state.Finally,we describe the unique functions of ataxia-telangiectasia mutated in various types of neuronal and glial cells including cerebellar granule neurons,astrocytes,and microglial cells.