Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low inse...Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system.展开更多
Coupling plane wave into a single-mode fiber (SMF) with high and steady coupling efficiency is crucial for fiber- based free-space laser systems, where random angular jitters are the main influencing factors of fibe...Coupling plane wave into a single-mode fiber (SMF) with high and steady coupling efficiency is crucial for fiber- based free-space laser systems, where random angular jitters are the main influencing factors of fiber coupling. In this paper, we verified a new adaptive-optic device named adaptive fiber coupler (AFC) which could compensate angular jitters and improve the SMF coupling efficiency in some degree. Experiments of SMF coupling under the angular jitter situation using AFC have been achieved. Stochastic parallel gradient descent (SPGD) algorithm is employed as the control strategy, of which the iteration rate is 625 Hz. In closed loop, the coupling efficiency keeps above 65% when angular errors are below 80/3tad. The compensation bandwidth is 35 Hz at sine-jitter of 15 ~rad amplitude with average coupling efficiency of above 60%. Also, experiments with simulated turbulence have been studied. The average coupling efficiency increases from 31.97% in open loop to 61.33% in closed loop, and mean square error (MSE) of coupling efficiency drops from 7.43% to 1.75%.展开更多
Through theoretical analysis and experiments, the viscoelastic mechanical model of optical fiber coupler in the process of fused biconical taper was established, and the numerical analysis in non-uniform temperature f...Through theoretical analysis and experiments, the viscoelastic mechanical model of optical fiber coupler in the process of fused biconical taper was established, and the numerical analysis in non-uniform temperature field was made. The results show that the rheological parameters, such as drawing speed and fused temperature, have a tremendous influence on stress distribution and performance of optical fiber coupler, especially the influence of fused temperature. The change of fused temperature by 5℃ can lead to the change of the maximum stress by 30% and stress difference by 20% in the same cross section. The change of temperature gradient by 3% can result in the change of stress difference by 90%. In the present condition of rheological technology, rheological defects such as crystallizations and microcracks are easy to generate in the optical fiber coupler.展开更多
To find out the effect of the shape of fused taper region on the optical fiber coupler, the fiber couplers were fabricated at different drawing speeds with a six-axes fiber coupler machine. The results, which were obt...To find out the effect of the shape of fused taper region on the optical fiber coupler, the fiber couplers were fabricated at different drawing speeds with a six-axes fiber coupler machine. The results, which were obtained fi'om the shape of fused taper region measured with microscope, show that there is a close correlation between the cone angle and optical performance of fiber coupler. High-performance fiber coupler cannot be obtained until rheological shape is controlled accurately. The numerical analysis model, which was built based on generalized Maxwell viscoelastic theory, is resolved with ANSYS software. The calculated results accord with the experimental data. It can apply a theoretic basis for forecasting the shape of fiber coupler fabricated under the conditions of different technological parameters.展开更多
Based on the coupling mode theory that the coupling ratio of fiber coupler changes periodically with center distance of two optical fibers, a novel manufacturing method of optical fiber couplers was developed with fus...Based on the coupling mode theory that the coupling ratio of fiber coupler changes periodically with center distance of two optical fibers, a novel manufacturing method of optical fiber couplers was developed with fused biconical taper experimental system. Its fabrication process is that the fiber is fused but not stretched when light begins to split, and the reduction of diameter of fiber is dependent on the theological characteristic of the fused fiberglass. The performance of the coupler was tested. The results show that the performance of the novel optical fiber coupler meets the performance expectations, and its diameter of coupling region (about 30 μm) is twice as long as that of classical fused biconical taper coupler (about 16 μm), so the default, that is, the device is easy to fracture, is restrained and the reliability is greatly improved.展开更多
We demonstrate visible-light all-fiber vortex lasers by incorporating the home-made mode selective couplers (MSCs). The MSC at green or red wavebands is fabricated by specially designing and fusing a single-mode fiber...We demonstrate visible-light all-fiber vortex lasers by incorporating the home-made mode selective couplers (MSCs). The MSC at green or red wavebands is fabricated by specially designing and fusing a single-mode fiber (SMF) and a few-mode fiber (FMF). The MSCs inserted into visible fiber cavities act as power splitters and mode converters from the LP01 to LP11 mode at green and red wavelengths, respectively. The red-light all-fiber vortex laser is formed by a 10-cm Pr3+/Yb3+:ZBLAN fiber, a fiber Bragg grating, a fiber end-facet mirror and the MSC at 635 nm, which generates vortex beams with OAM±1 at 634.4 nm and an output power of 13 mW. The green-light all-fiber vortex laser consists of a 12-cm Ho3+:ZBLAN fiber, two fiber pigtail mirrors, and the MSC at 550 nm, which generates vortex beams with OAM±1 at 548.9 nm and an output power of 3 mW.展开更多
To obtain excellent performance optical fiber couplers, the structural difference of SiO2 in couplers with different manufacturing techniques was investigated. With 740-FT-IR infrared spectrometric analyzer, the infra...To obtain excellent performance optical fiber couplers, the structural difference of SiO2 in couplers with different manufacturing techniques was investigated. With 740-FT-IR infrared spectrometric analyzer, the infrared absorption spectrum of SiO2 in couplers at different drawing velocities was measured, and two characteristic peaks in the wavenumber range of 6502000 cm-1 were observed. One characteristic peak is at about 943 cm-1, which is (attributed) to Si—O—Si bond asymmetric stretching vibration, the other is at about 773 cm-1, which is attributed to (Si—O—Si) bond symmetric stretching vibration. From the infrared spectrum, it is found that the intensity and wavenumber of the characteristic peaks are related to the manufacturing technique of couplers. The characteristic peak at (about) 943 cm-1 becomes steeper when increasing the drawing velocity. At the drawing velocity of 150 μm/s, the distance between the two characteristic peaks is maximum, and then the optical fiber coupler has excellent performance, indicating that the performance of the optical fiber coupler has a close relationship with the wavenumber of the two characteristic peaks.展开更多
To find out the influence of technological parameters on optical performance of fused optical fiber device, the fiber coupler was served as subject investigated by using the fused biconical taper machining as experime...To find out the influence of technological parameters on optical performance of fused optical fiber device, the fiber coupler was served as subject investigated by using the fused biconical taper machining as experimental setup. Fused fiber coupler's optical performances such as insertion loss, excess loss, directivity and uniformity were tested with the optical test system that was constituted of tunable laser and optical spectrum analyzer. Especially the relationship between optical performance and drawing speed was investigated. The experimental results show that the optical performance is closely related to process conditions. At fused temperature of 1 200 ℃, there exists a drawing speed of 150 μms, which makes the device's performance optimum. Out of this speed region, the optical performance drops quickly. At drawing speed of 200 μms, the excess loss is relatively small when the fused temperature is above 1 200 ℃. So the technological parameters have close relationship with optical performance of the coupler, and the good performance coupler can't get until the drawing speed and fused temperature match accurately.展开更多
An optical code generating device has been developed based on a 1×2 asymmetric plastic optical fiber (POF) coupler. The code generating device provides a unique series of output power which are successively use...An optical code generating device has been developed based on a 1×2 asymmetric plastic optical fiber (POF) coupler. The code generating device provides a unique series of output power which are successively used as an optical code in a portable optical access-card system. The device utilizing a tap-off ratio (TOFR) technique based on a simple variation of the tap width of an asymmetric Y-branch splitter, allows various ratios of optical power to be generated. The POF coupler has been fabricated using low cost acrylic material and computer numerical control (CNC) machining technique. The simulated and fabricated results show the same linear characteristics between the TOFR and the tap width. The fabricated device enables a variation of the TOFR from 10% up to 50% for a tap width of 500 um to 1 mm.展开更多
The coupling efficiency of the pump coupler determines the pump light injection capacity of a laser system. Experi- mental analysis of the influences of different factors on the pump coupling efficiency is in accordan...The coupling efficiency of the pump coupler determines the pump light injection capacity of a laser system. Experi- mental analysis of the influences of different factors on the pump coupling efficiency is in accordance with this conclusion. We use two Nufern fibers (400 Ixrn/440 p.m with NA = 0.22) as pump arm, one Nufern fiber (20 μm/400 μm with NA = 0.06/0.46) as a main fiber to make a side-pumping (2 + 1) × 1 coupler. The experimental result shows that the total output power of this (2 + 1) × 1 coupler is about 1160 W, corresponding to a coupling efficiency as high as 98.6%. The loss of signal light is less than 1%.展开更多
We present a numerical investigation of the propagation and the switching of ultra-short pulses (100 fs) in a two-core nonlinear coupler of photonic crystal fibers constructed with periodically modulated the non-linea...We present a numerical investigation of the propagation and the switching of ultra-short pulses (100 fs) in a two-core nonlinear coupler of photonic crystal fibers constructed with periodically modulated the non-linearity fiber (PMNL-PFC). Our simulations are taking into account different amplitude and frequency modulations of the PMNL-PFC. A coupler for coupling whose length is Lc = 1.8 cm, the transmission characteristics, the compression factor, the crosstalk (Xtalk) and extinction ratio (Xratio) levels of the first order solitons were studied for low to high pump energies considering 2Lc. By an analysis on the reference channel (channel 2), it is observed that at low modulation frequencies an increase occurs in the switching power increasing transmission efficiency. For high modulation frequencies, the transmitted energy efficiency loses. The switching pulses are stronger for low frequency and high amplitude modulation. The Xtalk is a function of the measurement made on the secondary channel (channel 1). It was observed that this unwanted high-frequency energy increases to lessen the measure of the amplitude modulation. In summary, we have demonstrated that introduction of a non-linearity profile takes the periodically modulated PMNL-PFC to strong variations at transmission efficiency, Xtalk, Xratio a function of frequency and modulation amplitude and the input power.展开更多
The performance of the optical fiber coupler prepared with fused biconical taper method is determined by the quality of fused stretching. Besides, the stable high-temperature heat source is the essential guarantee for...The performance of the optical fiber coupler prepared with fused biconical taper method is determined by the quality of fused stretching. Besides, the stable high-temperature heat source is the essential guarantee for fused stretching process to go smoothly. The way of using AC (alternating current) arc as the heat source is proposed in this article. In addition, the paper also introduces high-frequency high-voltage power supply with the characteristics of constant current and restricted voltage, which is composed of preceding voltage regulation part and following inverter.展开更多
A new Michelson interferometer based on fiber Bragg grating(FBG) is demonstrated. FBCs are used as reflectors, and the laser is replaced by a broadband source as input light in this interferometer. To demodulate the...A new Michelson interferometer based on fiber Bragg grating(FBG) is demonstrated. FBCs are used as reflectors, and the laser is replaced by a broadband source as input light in this interferometer. To demodulate the signals, a 3 × 3 coupler is used as a splitter. By combining with software demodulation, the outer interference can be obtained from the outputs of the interferometer. This kind of interferometer can also be wavelength-multiplexed easily by composing a series Michelson interferometer. The experiment results show that the clear interference fringe can be obtained by adjusting the path difference to make it less than interference length of FBG. The signals are also demodulated.展开更多
The study on trichromatic optical fiber radiation thermometers is especially useful for the non-contact accurate temperature measurement of those materials with the emissivities changing dramatically with wavelength.O...The study on trichromatic optical fiber radiation thermometers is especially useful for the non-contact accurate temperature measurement of those materials with the emissivities changing dramatically with wavelength.On the basis of the trichromatic thermometry principle,the operation wavelengths of the thermometer are selected properly so as to compensate the emissivity influence on measurement result effectively. Using 1×3 branching fiber coupler and narrow band filter significantly improves the instrument reliability.The instrument is self-calibrated,multi -functional and easy touse due to the embodied microcontroller and some other techniques.展开更多
A balanced optical microwave phase detector(BOMPD) based on a 3 × 3 coupler is presented. This system was developed to extract ultra-low-jitter microwave signals from optical pulse trains emitted by mode-locked E...A balanced optical microwave phase detector(BOMPD) based on a 3 × 3 coupler is presented. This system was developed to extract ultra-low-jitter microwave signals from optical pulse trains emitted by mode-locked Er-fiber lasers, and synchronized microwave and laser systems. We demonstrate that the BOMPD achieves a precision of synchronization of less than 100 femtosecond of timing jitter. The experimental setup can be applied to the soft X-ray free-electron laser located on the campus of the Shanghai synchrotron radiation facility. A microwave signal with a 2.856 GHz frequency is extracted from a238 MHz mode-locked Er-laser, with an absolute timing jitter of 34 fs in the 10 Hz–10 MHz frequency offset range.In addition, the microwave and 238 MHz optical pulse signals are synchronized with a relative timing jitter of16 fs at the same frequency offset range.展开更多
基金supported in part by the ZTE Industry-University-Institute Cooperation Funds.
文摘Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61205069).
文摘Coupling plane wave into a single-mode fiber (SMF) with high and steady coupling efficiency is crucial for fiber- based free-space laser systems, where random angular jitters are the main influencing factors of fiber coupling. In this paper, we verified a new adaptive-optic device named adaptive fiber coupler (AFC) which could compensate angular jitters and improve the SMF coupling efficiency in some degree. Experiments of SMF coupling under the angular jitter situation using AFC have been achieved. Stochastic parallel gradient descent (SPGD) algorithm is employed as the control strategy, of which the iteration rate is 625 Hz. In closed loop, the coupling efficiency keeps above 65% when angular errors are below 80/3tad. The compensation bandwidth is 35 Hz at sine-jitter of 15 ~rad amplitude with average coupling efficiency of above 60%. Also, experiments with simulated turbulence have been studied. The average coupling efficiency increases from 31.97% in open loop to 61.33% in closed loop, and mean square error (MSE) of coupling efficiency drops from 7.43% to 1.75%.
基金Project (50235040) supported by the National Natural Science Foundation of China project( NCET-040753) supportedby the New Century Excellent Talent in University project(20050533037) supported by the Doctoral Programof Higher Education
文摘Through theoretical analysis and experiments, the viscoelastic mechanical model of optical fiber coupler in the process of fused biconical taper was established, and the numerical analysis in non-uniform temperature field was made. The results show that the rheological parameters, such as drawing speed and fused temperature, have a tremendous influence on stress distribution and performance of optical fiber coupler, especially the influence of fused temperature. The change of fused temperature by 5℃ can lead to the change of the maximum stress by 30% and stress difference by 20% in the same cross section. The change of temperature gradient by 3% can result in the change of stress difference by 90%. In the present condition of rheological technology, rheological defects such as crystallizations and microcracks are easy to generate in the optical fiber coupler.
基金Project (50605063) supported by the National Natural Science Foundation of ChinaProject(NCET-040753) supported by New Century Excellent Talents in University, ChinaProject (20050533037) supported by the Doctoral Program of Higher Education, China
文摘To find out the effect of the shape of fused taper region on the optical fiber coupler, the fiber couplers were fabricated at different drawing speeds with a six-axes fiber coupler machine. The results, which were obtained fi'om the shape of fused taper region measured with microscope, show that there is a close correlation between the cone angle and optical performance of fiber coupler. High-performance fiber coupler cannot be obtained until rheological shape is controlled accurately. The numerical analysis model, which was built based on generalized Maxwell viscoelastic theory, is resolved with ANSYS software. The calculated results accord with the experimental data. It can apply a theoretic basis for forecasting the shape of fiber coupler fabricated under the conditions of different technological parameters.
基金Project(50235040) supported by the National Natural Science Foundation of China projected(NCET-040753) supporteby the Programof New Century Excellent Talents in University project(20050533037) supported by the Research Fund for the DoctoraProgramof Higher Education
文摘Based on the coupling mode theory that the coupling ratio of fiber coupler changes periodically with center distance of two optical fibers, a novel manufacturing method of optical fiber couplers was developed with fused biconical taper experimental system. Its fabrication process is that the fiber is fused but not stretched when light begins to split, and the reduction of diameter of fiber is dependent on the theological characteristic of the fused fiberglass. The performance of the coupler was tested. The results show that the performance of the novel optical fiber coupler meets the performance expectations, and its diameter of coupling region (about 30 μm) is twice as long as that of classical fused biconical taper coupler (about 16 μm), so the default, that is, the device is easy to fracture, is restrained and the reliability is greatly improved.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91750115 and 91750108)the Equipment Pre-research Project of Equipment Development Department of Central Military Commission,China(Grant No.61404140112)the Science and Technology Planning Project of Xiamen City,China(Grant No.3502Z20183003).
文摘We demonstrate visible-light all-fiber vortex lasers by incorporating the home-made mode selective couplers (MSCs). The MSC at green or red wavebands is fabricated by specially designing and fusing a single-mode fiber (SMF) and a few-mode fiber (FMF). The MSCs inserted into visible fiber cavities act as power splitters and mode converters from the LP01 to LP11 mode at green and red wavelengths, respectively. The red-light all-fiber vortex laser is formed by a 10-cm Pr3+/Yb3+:ZBLAN fiber, a fiber Bragg grating, a fiber end-facet mirror and the MSC at 635 nm, which generates vortex beams with OAM±1 at 634.4 nm and an output power of 13 mW. The green-light all-fiber vortex laser consists of a 12-cm Ho3+:ZBLAN fiber, two fiber pigtail mirrors, and the MSC at 550 nm, which generates vortex beams with OAM±1 at 548.9 nm and an output power of 3 mW.
文摘To obtain excellent performance optical fiber couplers, the structural difference of SiO2 in couplers with different manufacturing techniques was investigated. With 740-FT-IR infrared spectrometric analyzer, the infrared absorption spectrum of SiO2 in couplers at different drawing velocities was measured, and two characteristic peaks in the wavenumber range of 6502000 cm-1 were observed. One characteristic peak is at about 943 cm-1, which is (attributed) to Si—O—Si bond asymmetric stretching vibration, the other is at about 773 cm-1, which is attributed to (Si—O—Si) bond symmetric stretching vibration. From the infrared spectrum, it is found that the intensity and wavenumber of the characteristic peaks are related to the manufacturing technique of couplers. The characteristic peak at (about) 943 cm-1 becomes steeper when increasing the drawing velocity. At the drawing velocity of 150 μm/s, the distance between the two characteristic peaks is maximum, and then the optical fiber coupler has excellent performance, indicating that the performance of the optical fiber coupler has a close relationship with the wavenumber of the two characteristic peaks.
基金Project (50605063) supported by the National Natural Science Foundation of ChinaProject(NCET-040753) supported by New Century Excellent Talents in University of ChinaProject (20050533037) supported by the Doctoral Program of Higher Education of China
文摘To find out the influence of technological parameters on optical performance of fused optical fiber device, the fiber coupler was served as subject investigated by using the fused biconical taper machining as experimental setup. Fused fiber coupler's optical performances such as insertion loss, excess loss, directivity and uniformity were tested with the optical test system that was constituted of tunable laser and optical spectrum analyzer. Especially the relationship between optical performance and drawing speed was investigated. The experimental results show that the optical performance is closely related to process conditions. At fused temperature of 1 200 ℃, there exists a drawing speed of 150 μms, which makes the device's performance optimum. Out of this speed region, the optical performance drops quickly. At drawing speed of 200 μms, the excess loss is relatively small when the fused temperature is above 1 200 ℃. So the technological parameters have close relationship with optical performance of the coupler, and the good performance coupler can't get until the drawing speed and fused temperature match accurately.
基金supported by the Malaysian E-Science Fund under Grant No 01-01-01-SF0197
文摘An optical code generating device has been developed based on a 1×2 asymmetric plastic optical fiber (POF) coupler. The code generating device provides a unique series of output power which are successively used as an optical code in a portable optical access-card system. The device utilizing a tap-off ratio (TOFR) technique based on a simple variation of the tap width of an asymmetric Y-branch splitter, allows various ratios of optical power to be generated. The POF coupler has been fabricated using low cost acrylic material and computer numerical control (CNC) machining technique. The simulated and fabricated results show the same linear characteristics between the TOFR and the tap width. The fabricated device enables a variation of the TOFR from 10% up to 50% for a tap width of 500 um to 1 mm.
基金Project supported by the National Natural Science Foundation of China(Grant No.61307057)the Fund from the State Key Laboratory of Tribology,Tsinghua University(Grant No.SKLT12B08)
文摘The coupling efficiency of the pump coupler determines the pump light injection capacity of a laser system. Experi- mental analysis of the influences of different factors on the pump coupling efficiency is in accordance with this conclusion. We use two Nufern fibers (400 Ixrn/440 p.m with NA = 0.22) as pump arm, one Nufern fiber (20 μm/400 μm with NA = 0.06/0.46) as a main fiber to make a side-pumping (2 + 1) × 1 coupler. The experimental result shows that the total output power of this (2 + 1) × 1 coupler is about 1160 W, corresponding to a coupling efficiency as high as 98.6%. The loss of signal light is less than 1%.
文摘We present a numerical investigation of the propagation and the switching of ultra-short pulses (100 fs) in a two-core nonlinear coupler of photonic crystal fibers constructed with periodically modulated the non-linearity fiber (PMNL-PFC). Our simulations are taking into account different amplitude and frequency modulations of the PMNL-PFC. A coupler for coupling whose length is Lc = 1.8 cm, the transmission characteristics, the compression factor, the crosstalk (Xtalk) and extinction ratio (Xratio) levels of the first order solitons were studied for low to high pump energies considering 2Lc. By an analysis on the reference channel (channel 2), it is observed that at low modulation frequencies an increase occurs in the switching power increasing transmission efficiency. For high modulation frequencies, the transmitted energy efficiency loses. The switching pulses are stronger for low frequency and high amplitude modulation. The Xtalk is a function of the measurement made on the secondary channel (channel 1). It was observed that this unwanted high-frequency energy increases to lessen the measure of the amplitude modulation. In summary, we have demonstrated that introduction of a non-linearity profile takes the periodically modulated PMNL-PFC to strong variations at transmission efficiency, Xtalk, Xratio a function of frequency and modulation amplitude and the input power.
文摘The performance of the optical fiber coupler prepared with fused biconical taper method is determined by the quality of fused stretching. Besides, the stable high-temperature heat source is the essential guarantee for fused stretching process to go smoothly. The way of using AC (alternating current) arc as the heat source is proposed in this article. In addition, the paper also introduces high-frequency high-voltage power supply with the characteristics of constant current and restricted voltage, which is composed of preceding voltage regulation part and following inverter.
基金the National Natural Science Foundation of China (60277015) and the National"863"Program Project (2004AA616020)
文摘A new Michelson interferometer based on fiber Bragg grating(FBG) is demonstrated. FBCs are used as reflectors, and the laser is replaced by a broadband source as input light in this interferometer. To demodulate the signals, a 3 × 3 coupler is used as a splitter. By combining with software demodulation, the outer interference can be obtained from the outputs of the interferometer. This kind of interferometer can also be wavelength-multiplexed easily by composing a series Michelson interferometer. The experiment results show that the clear interference fringe can be obtained by adjusting the path difference to make it less than interference length of FBG. The signals are also demodulated.
文摘The study on trichromatic optical fiber radiation thermometers is especially useful for the non-contact accurate temperature measurement of those materials with the emissivities changing dramatically with wavelength.On the basis of the trichromatic thermometry principle,the operation wavelengths of the thermometer are selected properly so as to compensate the emissivity influence on measurement result effectively. Using 1×3 branching fiber coupler and narrow band filter significantly improves the instrument reliability.The instrument is self-calibrated,multi -functional and easy touse due to the embodied microcontroller and some other techniques.
基金supported by the National Natural Science Foundation of China(No.11175241)
文摘A balanced optical microwave phase detector(BOMPD) based on a 3 × 3 coupler is presented. This system was developed to extract ultra-low-jitter microwave signals from optical pulse trains emitted by mode-locked Er-fiber lasers, and synchronized microwave and laser systems. We demonstrate that the BOMPD achieves a precision of synchronization of less than 100 femtosecond of timing jitter. The experimental setup can be applied to the soft X-ray free-electron laser located on the campus of the Shanghai synchrotron radiation facility. A microwave signal with a 2.856 GHz frequency is extracted from a238 MHz mode-locked Er-laser, with an absolute timing jitter of 34 fs in the 10 Hz–10 MHz frequency offset range.In addition, the microwave and 238 MHz optical pulse signals are synchronized with a relative timing jitter of16 fs at the same frequency offset range.