Single mode-multimode-single mode (SMS) sensor is widely used for parameters measurement, such as bending, dis-placement, temperature, strain, refractive index, etc. Generally, SMS sensor has advantages of simpl...Single mode-multimode-single mode (SMS) sensor is widely used for parameters measurement, such as bending, dis-placement, temperature, strain, refractive index, etc. Generally, SMS sensor has advantages of simple structure, low cost and easy layout, therefore it has become a research hotspot in recent years. In this paper, the multimode fiber with large core is used for manufacturing SMS structure with high sensitivity. Firstly, the multimode fiber with core/cladding diameters of 105/ 125 jitm has access to the system by means of single mode optical fiber. Secondly, SMS device structure is manufactured by welding the eccentric shaft of multimode optical fiber. Afterwards, mode interference effect and spectral response characteristics of the structure of single mode-multimode-single mode optical fiber are analyzed theoretically. Finally, with the help of a wide spectrum light source and a spectrum analyzer, the transmission spectra characteristics of SMS optical fiber with strain is tested. By observing the curve that the wave changes with stress, the sensitivity is calculated and it is consistent with theoretical value .展开更多
This paper presents a long-range displacement measurement method by using a single- multi-single mode (SMS) fiber structure, attached to a flexible plate between two permanent poles and the optical time domain refle...This paper presents a long-range displacement measurement method by using a single- multi-single mode (SMS) fiber structure, attached to a flexible plate between two permanent poles and the optical time domain reflectometer (OTDR)-based interrogator. The SMS fiber structure sensors are prepared with two different configurations, i.e. straight and sinusoidal configurations. It is demonstrated that the displacement sensor can perform a displacement measurement with a range from 0 mm to 150 mm with a resolution of 0.159 mm. The sinusoidal configuration provides a better sensitivity than the straight configuration. The proposed sensor offers a low cost, and it can be implemented for quasi-distributed displacement measurement which is suitable for civil structure monitoring.展开更多
A singlemode-multimode-singlemode (SMS) fiber structure for temperature measurement using an optical time domain reflectometer (OTDR)-based interrogation system is proposed. A temperature measurement range of 40 ...A singlemode-multimode-singlemode (SMS) fiber structure for temperature measurement using an optical time domain reflectometer (OTDR)-based interrogation system is proposed. A temperature measurement range of 40 ℃-195 ℃ with a resolution of 0.12 ℃ and a linearity of 0.992 could be achieved for the multimode fiber (MMF) graded index with a length of 60mm. It was also demonstrated that two-point temperature measurement with two SMS fiber structures as temperature sensors could be made. The proposed temperature measurement system offered a high resolution and also benefited from a simple configuration with a capability of multi-point temperature measurement.展开更多
A modal interferometer is experimentally demonstrated based on tapering a single-mode-multimode-single- mode (SMS) fiber structure heated by hydrogen flame. The interference fringe begins to form when tapering lengt...A modal interferometer is experimentally demonstrated based on tapering a single-mode-multimode-single- mode (SMS) fiber structure heated by hydrogen flame. The interference fringe begins to form when tapering length is 19.8 mm, and becomes regular and clear when the tapering length is longer and the tapered waist diameter is smaller. Annealing process is undertaken to achieve a high extension ratio of approximately 17 dB with free spectral range of 1.5 nm when the tapering length is 33 mm and the tapered waist diameter is approximately 5 μm. The temperature and axial strain dependences of the tapered SMS structure are characterized, and the measured temperature and strain coefficients are +7 pm/℃ and -9.536 pm/με, respectively.展开更多
The singlemode-multimode-singlemode(SMS)fiber structure for a heart rate monitoring is proposed and developed.An artificial electrocardiogram(ECG)signal is used to simulate the heart pulse at different rates ranging f...The singlemode-multimode-singlemode(SMS)fiber structure for a heart rate monitoring is proposed and developed.An artificial electrocardiogram(ECG)signal is used to simulate the heart pulse at different rates ranging from 50 beats per minute(bpm)to 200 bpm.The SMS fiber structure is placed at the center of a loudspeaker and it senses the vibration of the pulse.The vibration of the pulse signal applied to the SMS fiber structure changes the intensity of the optical output power.The proposed sensor shows a linear frequency of the heart rate sensing range that matches well with the relevant heart rate from the artificial ECG.This work shows the capability of the SMS fiber structure monitoring the heart rate frequencies for a long term,high stability realization,and reproducibility,and being suitable for the observation in hospitals as well as in other environments.展开更多
基金National Natural Science Foundation of China(No.61405127)Shanxi Province Science Foundation for Youths(No.2014021023-1)+1 种基金Scientific and Technologial Innovation Programs of Higher Education Institutions in ShanxiProgram for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi
文摘Single mode-multimode-single mode (SMS) sensor is widely used for parameters measurement, such as bending, dis-placement, temperature, strain, refractive index, etc. Generally, SMS sensor has advantages of simple structure, low cost and easy layout, therefore it has become a research hotspot in recent years. In this paper, the multimode fiber with large core is used for manufacturing SMS structure with high sensitivity. Firstly, the multimode fiber with core/cladding diameters of 105/ 125 jitm has access to the system by means of single mode optical fiber. Secondly, SMS device structure is manufactured by welding the eccentric shaft of multimode optical fiber. Afterwards, mode interference effect and spectral response characteristics of the structure of single mode-multimode-single mode optical fiber are analyzed theoretically. Finally, with the help of a wide spectrum light source and a spectrum analyzer, the transmission spectra characteristics of SMS optical fiber with strain is tested. By observing the curve that the wave changes with stress, the sensitivity is calculated and it is consistent with theoretical value .
文摘This paper presents a long-range displacement measurement method by using a single- multi-single mode (SMS) fiber structure, attached to a flexible plate between two permanent poles and the optical time domain reflectometer (OTDR)-based interrogator. The SMS fiber structure sensors are prepared with two different configurations, i.e. straight and sinusoidal configurations. It is demonstrated that the displacement sensor can perform a displacement measurement with a range from 0 mm to 150 mm with a resolution of 0.159 mm. The sinusoidal configuration provides a better sensitivity than the straight configuration. The proposed sensor offers a low cost, and it can be implemented for quasi-distributed displacement measurement which is suitable for civil structure monitoring.
基金This work was supported Technology Research Grant Science Foundation. by Science and Indonesia Toray
文摘A singlemode-multimode-singlemode (SMS) fiber structure for temperature measurement using an optical time domain reflectometer (OTDR)-based interrogation system is proposed. A temperature measurement range of 40 ℃-195 ℃ with a resolution of 0.12 ℃ and a linearity of 0.992 could be achieved for the multimode fiber (MMF) graded index with a length of 60mm. It was also demonstrated that two-point temperature measurement with two SMS fiber structures as temperature sensors could be made. The proposed temperature measurement system offered a high resolution and also benefited from a simple configuration with a capability of multi-point temperature measurement.
基金supported in part by the National "973" Program of China(No.2011CB301700)the National Natural Science Foundation of China(Nos.61007052, 61071011,61107041,61127016)+3 种基金the International Cooperation Project from the Ministry of Science and Technology of China(No.2011FDA11780)the STCSM Project(Nos.09JC1408100,10DJ1400402)the "SMC Young Star" Scientist Program of Shanghai Jiao Tong Universitythe National Key Lab Projects(No. GKZD030021)
文摘A modal interferometer is experimentally demonstrated based on tapering a single-mode-multimode-single- mode (SMS) fiber structure heated by hydrogen flame. The interference fringe begins to form when tapering length is 19.8 mm, and becomes regular and clear when the tapering length is longer and the tapered waist diameter is smaller. Annealing process is undertaken to achieve a high extension ratio of approximately 17 dB with free spectral range of 1.5 nm when the tapering length is 33 mm and the tapered waist diameter is approximately 5 μm. The temperature and axial strain dependences of the tapered SMS structure are characterized, and the measured temperature and strain coefficients are +7 pm/℃ and -9.536 pm/με, respectively.
基金supported by the Directorate of Research and Community Service-Ministry of ResearchTechnology and Higher Education,Republic of Indonesia(Grant Nos.6/E/KPT/2019 and 954/PKS/ITS/2019).
文摘The singlemode-multimode-singlemode(SMS)fiber structure for a heart rate monitoring is proposed and developed.An artificial electrocardiogram(ECG)signal is used to simulate the heart pulse at different rates ranging from 50 beats per minute(bpm)to 200 bpm.The SMS fiber structure is placed at the center of a loudspeaker and it senses the vibration of the pulse.The vibration of the pulse signal applied to the SMS fiber structure changes the intensity of the optical output power.The proposed sensor shows a linear frequency of the heart rate sensing range that matches well with the relevant heart rate from the artificial ECG.This work shows the capability of the SMS fiber structure monitoring the heart rate frequencies for a long term,high stability realization,and reproducibility,and being suitable for the observation in hospitals as well as in other environments.