Car following model is one of microscopic models for describing traffic flow. Through linear stability analysis, the neutral stability lines and the critical points are obtained for the different types of car followin...Car following model is one of microscopic models for describing traffic flow. Through linear stability analysis, the neutral stability lines and the critical points are obtained for the different types of car following models and two modified models. The singular perturbation method has been used to derive various nonlinear wave equations, such as the Kortewegde-Vries (KdV) equation and the modified Korteweg-de-Vries (mKdV) equation, which could describe different density waves occurring in traffic flows under certain conditions. These density waves are mainly employed to depict the formation of traffic jams in the congested traffic flow. The general soliton solutions are given for the different types of car following models, and the results have been used to the modified models efficiently.展开更多
This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly,...This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly, a general method based on extended transformation is given to handle (P.) where the coefficients may be variable and uniform asymptotic expansions are obtained. Finally, a numerical example is provided to illustrate the proposed method.展开更多
This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singula...This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singularly perturbed two-point boundary value problems are first transformed into the singularly perturbed initial value problems. With the variable coefficient dimensional expanding, the non-homogeneous ordinary dif- ferential equations (ODEs) are transformed into the homogeneous ODEs, which are then solved by the high order multiplication perturbation method. Some linear and nonlinear numerical examples show that the proposed method has high precision.展开更多
In this paper, using the interpolation perturbation method. the author seeks tosolve several nonlinear problems. Numerical examples show that the method Df thispaper has good accuracy.
In this paper,on the basis of Ref.[1],the author studies the boundary value problems of the second-order differential equations,the highest order derivatives of which contain the small parameters.The numerical example...In this paper,on the basis of Ref.[1],the author studies the boundary value problems of the second-order differential equations,the highest order derivatives of which contain the small parameters.The numerical examples show that the calculating process of this method is quite simple and its accuracy is even higher than that of the multiple scales method.展开更多
In this paper the method and technique of the diagonalization are employed to transform a vector second-order nonlinear system into two first-order approximate diagonalized systems. The existence and the asymptotic be...In this paper the method and technique of the diagonalization are employed to transform a vector second-order nonlinear system into two first-order approximate diagonalized systems. The existence and the asymptotic behavior of the solutions are obtained for a vector second-order nonlinear Robin problem of singular perturbation type.展开更多
In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
The cases of large Reynolds number and small expansion ratio for the asym- metric laminar flow through a two-dimensional porous expanding channel are considered. The Navier-Stokes equations are reduced to a nonlinear ...The cases of large Reynolds number and small expansion ratio for the asym- metric laminar flow through a two-dimensional porous expanding channel are considered. The Navier-Stokes equations are reduced to a nonlinear fourth-order ordinary differential equation by introducing a time and space similar transformation. A singular perturbation method is used for the large suction Reynolds case to obtain an asymptotic solution by matching outer and inner solutions. For the case of small expansion ratios, we are able to obtain asymptotic solutions by double parameter expansion in either a small Reynolds number or a small asymmetric parameter. The asymptotic solutions indicate that the Reynolds number and expansion ratio play an important role in the flow behavior. Nu- merical methods are also designed to confirm the correctness of the present asymptotic solutions.展开更多
The asymptotic behavior of solutions of a similarity equation for the laminar flow in a porous channel with suction at both expanding and contracting walls has been obtained by using a singular perturbation method.How...The asymptotic behavior of solutions of a similarity equation for the laminar flow in a porous channel with suction at both expanding and contracting walls has been obtained by using a singular perturbation method.However,in the matching process,this solution neglects exponentially small terms.To take into account these exponentially small terms,a method involving the inclusion of exponentially small terms in a perturbation series was used to find two of the solutions analytically.The series involving the exponentially small terms and expansion ratio predicts dual solutions.Furthermore,the result indicates that the expansion ratio has much important influence on the solutions.展开更多
The solution of the cylindrical detonation wave generated by the linear explosion was obtained by numerical method in ref. [1.].In this paper, when the ratio of specific heat by using the enlargement coordinate method...The solution of the cylindrical detonation wave generated by the linear explosion was obtained by numerical method in ref. [1.].In this paper, when the ratio of specific heat by using the enlargement coordinate method, the first-order analytical solutions are obtained. The perturbation parameter is The correction of these solutions is checked at the end of this paper.展开更多
In this paper we consider the fully discrete local discontinuous Galerkin method, where the third order explicit Runge-Kutta time marching is coupled. For the one-dimensional time-dependent singularly perturbed proble...In this paper we consider the fully discrete local discontinuous Galerkin method, where the third order explicit Runge-Kutta time marching is coupled. For the one-dimensional time-dependent singularly perturbed problem with a boundary layer, we shall prove that the resulted scheme is not only of good behavior at the local stability, but also has the double-optimal local error estimate. It is to say, the convergence rate is optimal in both space and time, and the width of the cut-off subdomain is also nearly optimal, if the boundary condition at each intermediate stage is given in a proper way. Numerical experiments are also given.展开更多
This paper investigates the controllability of two time-scale systems using both the time-scale separation model and the slow-fast order reduction model. This work considers the effect of a singular perturbation param...This paper investigates the controllability of two time-scale systems using both the time-scale separation model and the slow-fast order reduction model. This work considers the effect of a singular perturbation parameter on the model transformations to improve the criterion precision. The Maclaurin expansion method and homotopy arithmetic are introduced to obtain t-dependent controllability criteria. Examples indicate that the s-dependent controllability criteria are more accurate and that the controllability of two time-scale systems does not change during model transformations with these more accurate forms.展开更多
基金supported by the National Basic Research Program of China (Grant No.2006CB705500)the National Natural Science Foundation of China (Grant Nos.10532060, 10602025, 10802042)the Natural Science Foundation of Ningbo (Grant No.2007A610050)
文摘Car following model is one of microscopic models for describing traffic flow. Through linear stability analysis, the neutral stability lines and the critical points are obtained for the different types of car following models and two modified models. The singular perturbation method has been used to derive various nonlinear wave equations, such as the Kortewegde-Vries (KdV) equation and the modified Korteweg-de-Vries (mKdV) equation, which could describe different density waves occurring in traffic flows under certain conditions. These density waves are mainly employed to depict the formation of traffic jams in the congested traffic flow. The general soliton solutions are given for the different types of car following models, and the results have been used to the modified models efficiently.
文摘This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly, a general method based on extended transformation is given to handle (P.) where the coefficients may be variable and uniform asymptotic expansions are obtained. Finally, a numerical example is provided to illustrate the proposed method.
基金supported by the National Natural Science Foundation of China(Key Program)(Nos.11132004 and 51078145)
文摘This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singularly perturbed two-point boundary value problems are first transformed into the singularly perturbed initial value problems. With the variable coefficient dimensional expanding, the non-homogeneous ordinary dif- ferential equations (ODEs) are transformed into the homogeneous ODEs, which are then solved by the high order multiplication perturbation method. Some linear and nonlinear numerical examples show that the proposed method has high precision.
文摘In this paper, using the interpolation perturbation method. the author seeks tosolve several nonlinear problems. Numerical examples show that the method Df thispaper has good accuracy.
文摘In this paper,on the basis of Ref.[1],the author studies the boundary value problems of the second-order differential equations,the highest order derivatives of which contain the small parameters.The numerical examples show that the calculating process of this method is quite simple and its accuracy is even higher than that of the multiple scales method.
文摘In this paper the method and technique of the diagonalization are employed to transform a vector second-order nonlinear system into two first-order approximate diagonalized systems. The existence and the asymptotic behavior of the solutions are obtained for a vector second-order nonlinear Robin problem of singular perturbation type.
文摘In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
基金supported by the Beijing Higher Education Young Elite Teacher Project(No.YETP0387)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-12-108A and FRF-BR13-023)the National Natural Science Foundation of China(Nos.51174028 and 11302024)
文摘The cases of large Reynolds number and small expansion ratio for the asym- metric laminar flow through a two-dimensional porous expanding channel are considered. The Navier-Stokes equations are reduced to a nonlinear fourth-order ordinary differential equation by introducing a time and space similar transformation. A singular perturbation method is used for the large suction Reynolds case to obtain an asymptotic solution by matching outer and inner solutions. For the case of small expansion ratios, we are able to obtain asymptotic solutions by double parameter expansion in either a small Reynolds number or a small asymmetric parameter. The asymptotic solutions indicate that the Reynolds number and expansion ratio play an important role in the flow behavior. Nu- merical methods are also designed to confirm the correctness of the present asymptotic solutions.
文摘The asymptotic behavior of solutions of a similarity equation for the laminar flow in a porous channel with suction at both expanding and contracting walls has been obtained by using a singular perturbation method.However,in the matching process,this solution neglects exponentially small terms.To take into account these exponentially small terms,a method involving the inclusion of exponentially small terms in a perturbation series was used to find two of the solutions analytically.The series involving the exponentially small terms and expansion ratio predicts dual solutions.Furthermore,the result indicates that the expansion ratio has much important influence on the solutions.
文摘The solution of the cylindrical detonation wave generated by the linear explosion was obtained by numerical method in ref. [1.].In this paper, when the ratio of specific heat by using the enlargement coordinate method, the first-order analytical solutions are obtained. The perturbation parameter is The correction of these solutions is checked at the end of this paper.
文摘In this paper we consider the fully discrete local discontinuous Galerkin method, where the third order explicit Runge-Kutta time marching is coupled. For the one-dimensional time-dependent singularly perturbed problem with a boundary layer, we shall prove that the resulted scheme is not only of good behavior at the local stability, but also has the double-optimal local error estimate. It is to say, the convergence rate is optimal in both space and time, and the width of the cut-off subdomain is also nearly optimal, if the boundary condition at each intermediate stage is given in a proper way. Numerical experiments are also given.
基金Supported by the National Science Fund for Distinguished Young Scholars(No.60625304)the National Natural Science Foundation of China(No.90716021)the Specialized Research Fund for the Doctoral Program of Higher Education of MOE,China(No.20050003049)
文摘This paper investigates the controllability of two time-scale systems using both the time-scale separation model and the slow-fast order reduction model. This work considers the effect of a singular perturbation parameter on the model transformations to improve the criterion precision. The Maclaurin expansion method and homotopy arithmetic are introduced to obtain t-dependent controllability criteria. Examples indicate that the s-dependent controllability criteria are more accurate and that the controllability of two time-scale systems does not change during model transformations with these more accurate forms.