The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to en...The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to ensure the safety of the pipe-laying operation and the normal operation of the pipelines. In this paper, the non-linear governing differential equation for getting the two parameters during J-lay installation is proposed and solved by use of singular perturbation technique, from which the asymptotic expression of stiffened catenary is obtained and the theoretical expression of its static geometric configuration as well as axial tension and bending moment is derived. Finite element results are applied to verify this method. Parametric investigation is conducted to analyze the influences of the seabed slope, unit weight, flexural stiffness, water depth, and the pipe-laying tower angle on the maximum tension and moment of pipeline by this method, and the results show how to control the installation process by changing individual parameters.展开更多
The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The m...The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected hy the variation of temperature and moisture, and are hosed on a micromechanical model of a laminate. The governing equations are based on the classical laminated shell theory, and including hygrothermal effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell were both taken into account. A boundary layer theory of shell buckling was extended to the case of laminated cylindrical shells under hygrothermal environments, and a singular peturbation technique was employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical shells under different sets of environmental conditions. The influences played by temperature rise, the degree of moisture concentration, fiber volume fraction, shell geometric parameter, total number of plies, stacking sequences and initial geometric imperfections are studied.展开更多
posthuckling analysis is presented for the stilTened cylindrical shell of finite length subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer t...posthuckling analysis is presented for the stilTened cylindrical shell of finite length subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stifl'cner' approach is adopted for the stiffencrs. In the analysis a singular perturbation technique is used (o determine the interactive buckling loads and the postbuckling paths. Numerical examples cover the performance of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results arc presented in the dimcnsionless graphical form.展开更多
A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation...A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation shell theory with von Krmn_Donnell_type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical panels under lateral pressure. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, moderately thick, cross_ply laminated cylindrical panels. The effects played by transverse shear deformation, panel geometric parameters, total number of plies, fiber orientation, and initial geometric imperfections are studied.展开更多
A postbuckling analysis is presented for a stiffened cylindrical shell of finite length subjected to combined loading of external pressure and a uniform temperature rise. The formulations are based on a boundary layer...A postbuckling analysis is presented for a stiffened cylindrical shell of finite length subjected to combined loading of external pressure and a uniform temperature rise. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stiffener' approach is adopted for the stiffeners. The analysis uses a singular perturbation technique to determine the interactive buckling loads and the postbuckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results are presented in dimensionless graphical form.展开更多
A compressive postbuckling analysis is presented for a laminated cylinderical panel with piezoelectric actuators subjected to the combined action of mechanical, electrical and thermal loads. The temperature field cons...A compressive postbuckling analysis is presented for a laminated cylinderical panel with piezoelectric actuators subjected to the combined action of mechanical, electrical and thermal loads. The temperature field considered is assumed to be a uniform distribution over the panel surface and through the panel thickness and the electric field is assumed to be the transverse component E_Z only. The material properties are assumed to be independent of the temperature and the electric field. The governing equations are based on the classical shell theory with von Krmn-Donnell-type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling,which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range,and initial geometric imperfections of the shell,is extended to the case of hybrid laminated cylindrical panels of finite length. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the compressive postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical thin panels with fully covered or embedded piezoelectric actuators under different sets of thermal and electrical loading conditions.The effects played by temperature rise,applied voltage,stacking sequence,the character of in-plane boundary conditions,as well as initial geometric imperfections are studied.展开更多
We consider a finite horizon,zero-sum linear quadratic differential game.The feature of this game is that a weight matrix of the minimiser’s control cost in the cost functional is singular.Due to this singularity,the...We consider a finite horizon,zero-sum linear quadratic differential game.The feature of this game is that a weight matrix of the minimiser’s control cost in the cost functional is singular.Due to this singularity,the game can be solved neither by applying the Isaacs MinMax principle nor using the Bellman–Isaacs equation approach,i.e.this game is singular.Aprevious paper of one of the authors analysed such a game in the case where the cost functional does not contain the minimiser’s control cost at all,i.e.the weight matrix of this cost equals zero.In this case,all coordinates of the minimiser’s control are singular.In the present paper,we study the general case where the weight matrix of the minimiser’s control cost,being singular,is not,in general,zero.This means that only a part of the coordinates of the minimiser’s control is singular,while others are regular.The considered game is treated by a regularisation,i.e.by its approximate conversion to an auxiliary regular game.The latter has the same equation of dynamics and a similar cost functional augmented by an integral of the squares of the singular control coordinates with a small positive weight.Thus,the auxiliary game is a partial cheap control differential game.Based on a singular perturbation’s asymptotic analysis of this auxiliary game,the existence of the value of the original(singular)game is established,and its expression is obtained.The maximiser’s optimal state feedback strategy and the minimising control sequence in the original game are designed.It is shown that the coordinates of the minimising control sequence,corresponding to the regular coordinates of the minimiser’s control,are point-wise convergent in the class of regular functions.The optimal trajectory sequence and the optimal trajectory in the considered singular game also are obtained.An illustrative example is presented.展开更多
基金financially supported by the National Basic Research Program of China(Grant No.2011CB013702)the National Natural Science Foundation of China(Grant No.50979113).1
文摘The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to ensure the safety of the pipe-laying operation and the normal operation of the pipelines. In this paper, the non-linear governing differential equation for getting the two parameters during J-lay installation is proposed and solved by use of singular perturbation technique, from which the asymptotic expression of stiffened catenary is obtained and the theoretical expression of its static geometric configuration as well as axial tension and bending moment is derived. Finite element results are applied to verify this method. Parametric investigation is conducted to analyze the influences of the seabed slope, unit weight, flexural stiffness, water depth, and the pipe-laying tower angle on the maximum tension and moment of pipeline by this method, and the results show how to control the installation process by changing individual parameters.
文摘The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected hy the variation of temperature and moisture, and are hosed on a micromechanical model of a laminate. The governing equations are based on the classical laminated shell theory, and including hygrothermal effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell were both taken into account. A boundary layer theory of shell buckling was extended to the case of laminated cylindrical shells under hygrothermal environments, and a singular peturbation technique was employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical shells under different sets of environmental conditions. The influences played by temperature rise, the degree of moisture concentration, fiber volume fraction, shell geometric parameter, total number of plies, stacking sequences and initial geometric imperfections are studied.
文摘posthuckling analysis is presented for the stilTened cylindrical shell of finite length subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stifl'cner' approach is adopted for the stiffencrs. In the analysis a singular perturbation technique is used (o determine the interactive buckling loads and the postbuckling paths. Numerical examples cover the performance of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results arc presented in the dimcnsionless graphical form.
文摘A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation shell theory with von Krmn_Donnell_type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical panels under lateral pressure. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, moderately thick, cross_ply laminated cylindrical panels. The effects played by transverse shear deformation, panel geometric parameters, total number of plies, fiber orientation, and initial geometric imperfections are studied.
文摘A postbuckling analysis is presented for a stiffened cylindrical shell of finite length subjected to combined loading of external pressure and a uniform temperature rise. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stiffener' approach is adopted for the stiffeners. The analysis uses a singular perturbation technique to determine the interactive buckling loads and the postbuckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results are presented in dimensionless graphical form.
文摘A compressive postbuckling analysis is presented for a laminated cylinderical panel with piezoelectric actuators subjected to the combined action of mechanical, electrical and thermal loads. The temperature field considered is assumed to be a uniform distribution over the panel surface and through the panel thickness and the electric field is assumed to be the transverse component E_Z only. The material properties are assumed to be independent of the temperature and the electric field. The governing equations are based on the classical shell theory with von Krmn-Donnell-type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling,which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range,and initial geometric imperfections of the shell,is extended to the case of hybrid laminated cylindrical panels of finite length. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the compressive postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical thin panels with fully covered or embedded piezoelectric actuators under different sets of thermal and electrical loading conditions.The effects played by temperature rise,applied voltage,stacking sequence,the character of in-plane boundary conditions,as well as initial geometric imperfections are studied.
文摘We consider a finite horizon,zero-sum linear quadratic differential game.The feature of this game is that a weight matrix of the minimiser’s control cost in the cost functional is singular.Due to this singularity,the game can be solved neither by applying the Isaacs MinMax principle nor using the Bellman–Isaacs equation approach,i.e.this game is singular.Aprevious paper of one of the authors analysed such a game in the case where the cost functional does not contain the minimiser’s control cost at all,i.e.the weight matrix of this cost equals zero.In this case,all coordinates of the minimiser’s control are singular.In the present paper,we study the general case where the weight matrix of the minimiser’s control cost,being singular,is not,in general,zero.This means that only a part of the coordinates of the minimiser’s control is singular,while others are regular.The considered game is treated by a regularisation,i.e.by its approximate conversion to an auxiliary regular game.The latter has the same equation of dynamics and a similar cost functional augmented by an integral of the squares of the singular control coordinates with a small positive weight.Thus,the auxiliary game is a partial cheap control differential game.Based on a singular perturbation’s asymptotic analysis of this auxiliary game,the existence of the value of the original(singular)game is established,and its expression is obtained.The maximiser’s optimal state feedback strategy and the minimising control sequence in the original game are designed.It is shown that the coordinates of the minimising control sequence,corresponding to the regular coordinates of the minimiser’s control,are point-wise convergent in the class of regular functions.The optimal trajectory sequence and the optimal trajectory in the considered singular game also are obtained.An illustrative example is presented.