A new digital watermarking algorithm based on the contourlet transform is proposed to improve the robustness and anti-attack performances of digital watermarking. The algorithm uses the Arnold scrambling technique and...A new digital watermarking algorithm based on the contourlet transform is proposed to improve the robustness and anti-attack performances of digital watermarking. The algorithm uses the Arnold scrambling technique and the singular value decomposition (SVD) scheme. The Arnold scrambling technique is used to preprocess the watermark, and the SVD scheme is used to find the best suitable hiding points. After the contourlet transform of the carrier image, intermediate frequency sub-bands are decomposed to obtain the singularity values. Then the watermark bits scrambled in the Arnold rules are dispersedly embedded into the selected SVD points. Finally, the inverse contourlet transform is applied to obtain the carrier image with the watermark. In the extraction part, the watermark can be extracted by the semi-blind watermark extracting algorithm. Simulation results show that the proposed algorithm has better hiding and robustness performances than the traditional contourlet watermarking algorithm and the contourlet watermarking algorithm with SVD. Meanwhile, it has good robustness performances when the embedded watermark is attacked by Gaussian noise, salt- and-pepper noise, multiplicative noise, image scaling and image cutting attacks, etc. while security is ensured.展开更多
The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identi...The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identify the dynamic parameter of spacecraftrapidly and accurately, an accelerated ERA with a partial singularvalues decomposition (PSVD) algorithm is presented. In the PSVD, theHankel matrix is reduced to dual diagonal form first, and thentransformed into a tridiagonal matrix.展开更多
By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation...By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.展开更多
针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别...针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。展开更多
In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co...In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.展开更多
目前,传统雷达成像方法的发展日渐完善,但在前视成像场景下,雷达难以获取方位向上的多普勒信息,从而限制了其方位向分辨率。为了解决这一问题,国内提出了微波关联成像方法。微波关联成像方法利用关联成像原理进行雷达成像,无需利用目标...目前,传统雷达成像方法的发展日渐完善,但在前视成像场景下,雷达难以获取方位向上的多普勒信息,从而限制了其方位向分辨率。为了解决这一问题,国内提出了微波关联成像方法。微波关联成像方法利用关联成像原理进行雷达成像,无需利用目标的多普勒信息即可实现高分辨率成像。这一新型雷达成像方法突破了传统雷达成像方法中受限于雷达孔径的分辨率,具有极高的前视成像发展潜力。目前,国内外对微波关联成像的研究主要集中在产生随机波前、解决模型失配问题和研制超材料孔径等方面,但对关键的关联过程的优化主要集中在压缩感知和深度学习方面,而在伪逆算法方面的研究相对较少。因此,为了进一步完善微波关联成像体系,本文提出了一种新的针对伪逆算法优化的微波关联前视成像方法。本文结合截断奇异值分解(Truncated Singular Value Decomposition,TSVD)处理和吉洪诺夫正则化(Tikhonov)提出了奇异值分解和吉洪诺夫正则化的联合处理方法(TSVD-Tikhonov,TSVDT),通过TSVDT方法对时空随机辐射阵进行处理,然后进行压缩关联成像。同时,本文比较了广义交叉验证(Generalized Cross-Validation,GCV)和L曲线法,并证明了在微波关联成像方法中,利用GCV法选择截断参数的运算耗时更短且更稳定。最后,利用微波暗室实验验证了该方法在低信噪比条件下提高了成像的抗干扰能力,并且仍能保持较快的运算速度。展开更多
Assessing the dynamics of heart rate fluctuations can provide valuable information about heart status. In this study, regularity of heart rate variability (HRV) of heart failure patients and healthy persons using th...Assessing the dynamics of heart rate fluctuations can provide valuable information about heart status. In this study, regularity of heart rate variability (HRV) of heart failure patients and healthy persons using the concept of singular value decomposition entropy (SvdEn) is analyzed. SvdEn is calculated from the time series using normalized singular values. The advantage of this method is its simplicity and fast computation. It enables analysis of very short and non-stationary data sets. The results show that SvdEn of patients with congestive heart failure (CHF) shows a low value (SvdEn: 0.056±0.006, p 〈 0.01) which can be completely separated from healthy subjects. In addition, differences of SvdEn values between day and night are found for the healthy groups. SvdEn decreases with age. The lower the SvdEn values, the higher the risk of heart disease. Moreover, SvdEn is associated with the energy of heart rhythm. The results show that using SvdEn for discriminating HRV in different physiological states for clinical applications is feasible and simple.展开更多
Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR ...Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection.展开更多
构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替...构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替换为3个连续的矩阵结构,实现了对YOLOX算法结构的重构。通过维度变化和奇异值分解操作,将预训练权重转换为与重构算法结构相对应的权重,从而将需要进行迁移学习的权重和需要保留的权重分离开,实现保留预训练模型先验信息的目的。在3种不同数量的数据集上分别进行了训练和验证。在最小数量的1/3数据集上,YSVD-Tea算法相较于改进前的YOLOX算法,mAP提高20.3个百分点。对比测试集与训练集的性能指标,YSVD-Tea算法在测试集与训练集的mAP差距仅为21.9%,明显小于YOLOX的40.6%和Faster R-CNN的55.4%。在数量最大的数据集上,YOLOX算法精确率、召回率、F1值、mAP分别为86.4%、87.0%、86.7%和88.3%,相较于对比算法均最高。YSVD-Tea在保证良好性能的同时,能够更好地适应少量标注样本的茶芽目标检测任务。展开更多
The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material...The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material level measurement.A new method for detecting and correcting the material level signal is proposed,which is based on the generalized S-transform and singular value decomposition(GST-SVD).In this project,the change of material level is regarded as the low speed moving target.First,the generalized S-transform is performed on the echo signals.During the transformation process,the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal,achieving the purpose of detecting the signal.Secondly,the SVD is used to reconstruct the time-frequency coefficient matrix.At last,the reconstructed time-frequency matrix performs an inverse transform.The experimental results show that the method can accurately detect the material level echo signal,and it can reserve the detailed characteristics of the signal while suppressing the noise,and reduce the false echo interference.Compared with other methods,the material level measurement error does not exceed 4.01%,and the material level measurement accuracy can reach 0.40%F.S.展开更多
The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memo...The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memory requirement when the scale of the matrices is quite large.In this paper,we use random projections to capture the most of the action of the matrices and propose randomized algorithms for computing a low-rank approximation of the GSVD.Serval error bounds of the approximation are also presented for the proposed randomized algorithms.Finally,some experimental results show that the proposed randomized algorithms can achieve a good accuracy with less computational cost and storage requirement.展开更多
A variety of strong MHD instabilities are always resulted from MHD activity of Tokamak plasmas. Central MHD instabilities can be observed with pinhole cameras to record soft x-ray (SXR) emission from the plasma along ...A variety of strong MHD instabilities are always resulted from MHD activity of Tokamak plasmas. Central MHD instabilities can be observed with pinhole cameras to record soft x-ray (SXR) emission from the plasma along many chords with a high temporal resolution. The investigation of MHD instabilities often necessitates an analysis on spatial-temporal signals. The method of Singular Value Decomposition (SVD) can split such signals into orthogonal spatial and temporal vectors. By this means, the repetition time and the characteristic radius of various MHD phenomena such as sawteeth and snake-like perturbation can be obtained. Moreover, the (1,1) MHD mode is analyzed in great detail by SVD and used to determine the radius of the q = 1 surface.展开更多
时域方法在地震同相轴倾斜或弯曲时,难以保证去噪的有效性;频域方法在信号频带较宽时,会衰减过多信号。基于此,提出一种时域与频域自适应奇异值分解(singular value decomposition,SVD)融合去噪算法。该算法包含分解与融合技术:在分解...时域方法在地震同相轴倾斜或弯曲时,难以保证去噪的有效性;频域方法在信号频带较宽时,会衰减过多信号。基于此,提出一种时域与频域自适应奇异值分解(singular value decomposition,SVD)融合去噪算法。该算法包含分解与融合技术:在分解技术中,根据奇异值二阶差分谱,在时域与频域中分别进行自适应去噪,得到两个分解矩阵;在融合技术中,提出了用于评估分解矩阵的一致度,利用融合策略得到融合矩阵,最后根据局部相似性调整得到去噪矩阵。在合成与野外数据集上与一些算法进行了对比实验,结果表明,所提算法能够更有效地压制噪声。展开更多
基金The National Natural Science Foundation of China( No. 69092008)
文摘A new digital watermarking algorithm based on the contourlet transform is proposed to improve the robustness and anti-attack performances of digital watermarking. The algorithm uses the Arnold scrambling technique and the singular value decomposition (SVD) scheme. The Arnold scrambling technique is used to preprocess the watermark, and the SVD scheme is used to find the best suitable hiding points. After the contourlet transform of the carrier image, intermediate frequency sub-bands are decomposed to obtain the singularity values. Then the watermark bits scrambled in the Arnold rules are dispersedly embedded into the selected SVD points. Finally, the inverse contourlet transform is applied to obtain the carrier image with the watermark. In the extraction part, the watermark can be extracted by the semi-blind watermark extracting algorithm. Simulation results show that the proposed algorithm has better hiding and robustness performances than the traditional contourlet watermarking algorithm and the contourlet watermarking algorithm with SVD. Meanwhile, it has good robustness performances when the embedded watermark is attacked by Gaussian noise, salt- and-pepper noise, multiplicative noise, image scaling and image cutting attacks, etc. while security is ensured.
文摘The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identify the dynamic parameter of spacecraftrapidly and accurately, an accelerated ERA with a partial singularvalues decomposition (PSVD) algorithm is presented. In the PSVD, theHankel matrix is reduced to dual diagonal form first, and thentransformed into a tridiagonal matrix.
基金Supported by The Special Foundation of Chinese Meteorological Bureau Climate Changes Program(200920)The Special Foundation of Hunan Major Scientific and Technological Research Program(2008FJ1006)~~
文摘By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.
文摘针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。
基金Supported in part by the National Thousand Talents Program of Chinathe National Natural Science Foundation of China(61473054)the Fundamental Research Funds for the Central Universities of China
文摘In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.
文摘目前,传统雷达成像方法的发展日渐完善,但在前视成像场景下,雷达难以获取方位向上的多普勒信息,从而限制了其方位向分辨率。为了解决这一问题,国内提出了微波关联成像方法。微波关联成像方法利用关联成像原理进行雷达成像,无需利用目标的多普勒信息即可实现高分辨率成像。这一新型雷达成像方法突破了传统雷达成像方法中受限于雷达孔径的分辨率,具有极高的前视成像发展潜力。目前,国内外对微波关联成像的研究主要集中在产生随机波前、解决模型失配问题和研制超材料孔径等方面,但对关键的关联过程的优化主要集中在压缩感知和深度学习方面,而在伪逆算法方面的研究相对较少。因此,为了进一步完善微波关联成像体系,本文提出了一种新的针对伪逆算法优化的微波关联前视成像方法。本文结合截断奇异值分解(Truncated Singular Value Decomposition,TSVD)处理和吉洪诺夫正则化(Tikhonov)提出了奇异值分解和吉洪诺夫正则化的联合处理方法(TSVD-Tikhonov,TSVDT),通过TSVDT方法对时空随机辐射阵进行处理,然后进行压缩关联成像。同时,本文比较了广义交叉验证(Generalized Cross-Validation,GCV)和L曲线法,并证明了在微波关联成像方法中,利用GCV法选择截断参数的运算耗时更短且更稳定。最后,利用微波暗室实验验证了该方法在低信噪比条件下提高了成像的抗干扰能力,并且仍能保持较快的运算速度。
基金Project supported by the National Natural Science Foundation of China (Grant No.30540025)
文摘Assessing the dynamics of heart rate fluctuations can provide valuable information about heart status. In this study, regularity of heart rate variability (HRV) of heart failure patients and healthy persons using the concept of singular value decomposition entropy (SvdEn) is analyzed. SvdEn is calculated from the time series using normalized singular values. The advantage of this method is its simplicity and fast computation. It enables analysis of very short and non-stationary data sets. The results show that SvdEn of patients with congestive heart failure (CHF) shows a low value (SvdEn: 0.056±0.006, p 〈 0.01) which can be completely separated from healthy subjects. In addition, differences of SvdEn values between day and night are found for the healthy groups. SvdEn decreases with age. The lower the SvdEn values, the higher the risk of heart disease. Moreover, SvdEn is associated with the energy of heart rhythm. The results show that using SvdEn for discriminating HRV in different physiological states for clinical applications is feasible and simple.
基金This research was funded by the National Natural Science Foundation of China(Nos.71762010,62262019,62162025,61966013,12162012)the Hainan Provincial Natural Science Foundation of China(Nos.823RC488,623RC481,620RC603,621QN241,620RC602,121RC536)+1 种基金the Haikou Science and Technology Plan Project of China(No.2022-016)the Project supported by the Education Department of Hainan Province,No.Hnky2021-23.
文摘Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection.
文摘构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替换为3个连续的矩阵结构,实现了对YOLOX算法结构的重构。通过维度变化和奇异值分解操作,将预训练权重转换为与重构算法结构相对应的权重,从而将需要进行迁移学习的权重和需要保留的权重分离开,实现保留预训练模型先验信息的目的。在3种不同数量的数据集上分别进行了训练和验证。在最小数量的1/3数据集上,YSVD-Tea算法相较于改进前的YOLOX算法,mAP提高20.3个百分点。对比测试集与训练集的性能指标,YSVD-Tea算法在测试集与训练集的mAP差距仅为21.9%,明显小于YOLOX的40.6%和Faster R-CNN的55.4%。在数量最大的数据集上,YOLOX算法精确率、召回率、F1值、mAP分别为86.4%、87.0%、86.7%和88.3%,相较于对比算法均最高。YSVD-Tea在保证良好性能的同时,能够更好地适应少量标注样本的茶芽目标检测任务。
基金National Natural Science Foundation of China(No.61761027)。
文摘The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material level measurement.A new method for detecting and correcting the material level signal is proposed,which is based on the generalized S-transform and singular value decomposition(GST-SVD).In this project,the change of material level is regarded as the low speed moving target.First,the generalized S-transform is performed on the echo signals.During the transformation process,the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal,achieving the purpose of detecting the signal.Secondly,the SVD is used to reconstruct the time-frequency coefficient matrix.At last,the reconstructed time-frequency matrix performs an inverse transform.The experimental results show that the method can accurately detect the material level echo signal,and it can reserve the detailed characteristics of the signal while suppressing the noise,and reduce the false echo interference.Compared with other methods,the material level measurement error does not exceed 4.01%,and the material level measurement accuracy can reach 0.40%F.S.
基金The research is supported by the National Natural Science Foundation of China under Grant nos.11701409 and 11571171the Natural Science Foundation of Jiangsu Province of China under Grant BK20170591the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant 17KJB110018.
文摘The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memory requirement when the scale of the matrices is quite large.In this paper,we use random projections to capture the most of the action of the matrices and propose randomized algorithms for computing a low-rank approximation of the GSVD.Serval error bounds of the approximation are also presented for the proposed randomized algorithms.Finally,some experimental results show that the proposed randomized algorithms can achieve a good accuracy with less computational cost and storage requirement.
基金The project supported by the National Nature Science Foundation of China (No. 10075014) and the Tenth-Five-Year Nuclear Energy Development of the Commission of Science Technology and Industry for National Defense, and of the China National Nuclear Corpor
文摘A variety of strong MHD instabilities are always resulted from MHD activity of Tokamak plasmas. Central MHD instabilities can be observed with pinhole cameras to record soft x-ray (SXR) emission from the plasma along many chords with a high temporal resolution. The investigation of MHD instabilities often necessitates an analysis on spatial-temporal signals. The method of Singular Value Decomposition (SVD) can split such signals into orthogonal spatial and temporal vectors. By this means, the repetition time and the characteristic radius of various MHD phenomena such as sawteeth and snake-like perturbation can be obtained. Moreover, the (1,1) MHD mode is analyzed in great detail by SVD and used to determine the radius of the q = 1 surface.
文摘时域方法在地震同相轴倾斜或弯曲时,难以保证去噪的有效性;频域方法在信号频带较宽时,会衰减过多信号。基于此,提出一种时域与频域自适应奇异值分解(singular value decomposition,SVD)融合去噪算法。该算法包含分解与融合技术:在分解技术中,根据奇异值二阶差分谱,在时域与频域中分别进行自适应去噪,得到两个分解矩阵;在融合技术中,提出了用于评估分解矩阵的一致度,利用融合策略得到融合矩阵,最后根据局部相似性调整得到去噪矩阵。在合成与野外数据集上与一些算法进行了对比实验,结果表明,所提算法能够更有效地压制噪声。