In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a serie...In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a series of explicit exact solutions for many nonlinear evolution equations. As examples, we choose combined KdV-MKdV equation, a fourth-order integrable nonlinear Schrödinger equation and generalized Dullin-Gottwald-Holm equation to demonstrate the effectiveness of these new elliptic function solutions. These new elliptic function solutions can be applied to many other nonlinear evolution equations.展开更多
In this paper,the(2+1)-dimensional Hunter-Saxton equation is proposed and studied.It is shown that the(2+1)-dimensional Hunter–Saxton equation can be transformed to the Calogero–Bogoyavlenskii–Schiff equation by re...In this paper,the(2+1)-dimensional Hunter-Saxton equation is proposed and studied.It is shown that the(2+1)-dimensional Hunter–Saxton equation can be transformed to the Calogero–Bogoyavlenskii–Schiff equation by reciprocal transformations.Based on the Lax-pair of the Calogero–Bogoyavlenskii–Schiff equation,a non-isospectral Lax-pair of the(2+1)-dimensional Hunter–Saxton equation is derived.In addition,exact singular solutions with a finite number of corners are obtained.Furthermore,the(2+1)-dimensional μ-Hunter–Saxton equation is presented,and its exact peaked traveling wave solutions are derived.展开更多
文摘In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a series of explicit exact solutions for many nonlinear evolution equations. As examples, we choose combined KdV-MKdV equation, a fourth-order integrable nonlinear Schrödinger equation and generalized Dullin-Gottwald-Holm equation to demonstrate the effectiveness of these new elliptic function solutions. These new elliptic function solutions can be applied to many other nonlinear evolution equations.
基金Supported by National Natural Science Foundation of China under Grant No.11471174NSF of Ningbo under Grant No.2014A610018
文摘In this paper,the(2+1)-dimensional Hunter-Saxton equation is proposed and studied.It is shown that the(2+1)-dimensional Hunter–Saxton equation can be transformed to the Calogero–Bogoyavlenskii–Schiff equation by reciprocal transformations.Based on the Lax-pair of the Calogero–Bogoyavlenskii–Schiff equation,a non-isospectral Lax-pair of the(2+1)-dimensional Hunter–Saxton equation is derived.In addition,exact singular solutions with a finite number of corners are obtained.Furthermore,the(2+1)-dimensional μ-Hunter–Saxton equation is presented,and its exact peaked traveling wave solutions are derived.