In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications o...In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications of this inequality.展开更多
In this paper, the authors establish the LV-mapping properties for a class of singular integrals along surfaces in Rn of the form {Ф(lul)u' : u ε ]t^n} as well as the related maimal operators provided that the f...In this paper, the authors establish the LV-mapping properties for a class of singular integrals along surfaces in Rn of the form {Ф(lul)u' : u ε ]t^n} as well as the related maimal operators provided that the function Ф satisfies certain oscillatory integral estimates of Van der Corput type, and the integral kernels are given by the radial function h E ε△γ(R+) for γ 〉 1 and the sphere function ΩεFβ(S^n-1) for someβ 〉 0 which is distinct from HI(Sn-1).展开更多
Let h, be a measurable function defined on R^+ ×R^+. Let Ω ∈ L(log L^+)^υq (S^n1-1 × S^n2-1) (1≤ υq ≤ 2) be homogeneous of degree zero and satisfy certain cancellation conditions. We show that...Let h, be a measurable function defined on R^+ ×R^+. Let Ω ∈ L(log L^+)^υq (S^n1-1 × S^n2-1) (1≤ υq ≤ 2) be homogeneous of degree zero and satisfy certain cancellation conditions. We show that the singular integral Tf(x1,x2)=p.v.∫∫R^n1+n2 Ω(y′1,y′2)h(|y1|,|y2|)/|y1|^n1|y2|^n2 f(x1-y1,x2-y2)dy1dy2maps from Sp,q^α1,α2F(R^n1×R^n2)boundedly to itself for 1 〈 p, q 〈 ∞, α1, α2 ∈R.展开更多
In this article, we obtain the LP-boundedness of commutators of Lipschitz functions and singular integrals with non-smooth kernels on Euclidean spaces.
The Peano derivatives are introduced for functions along an arc in the complex plane. Singular integrals of arbitrary order with singularities at its end-points are defined so that a unified theory for such integrals ...The Peano derivatives are introduced for functions along an arc in the complex plane. Singular integrals of arbitrary order with singularities at its end-points are defined so that a unified theory for such integrals and Cauchy principal value integrals is established.展开更多
This paper serves two purposes. One is to modify Strichartz's results with respect to the asymptotic averages of the Fourier transform of μ on , self-similar measure defined by Hutchinson. Another purpose is to c...This paper serves two purposes. One is to modify Strichartz's results with respect to the asymptotic averages of the Fourier transform of μ on , self-similar measure defined by Hutchinson. Another purpose is to consider a singular integral operator on μ and show that this op- erator is of type (p,p)(1<p<∞).展开更多
For the hypersurface Γ=(y,γ(y)), the singular integral operator along Γ is defined by. Kf(x,x_n)=P.V.∫_R^(nl), f(x-y,x_n-γ(y))_(|y|^(n-1))^(Ω(y))dy, where Ω is homogeneous of order 0, ∫_∑_(1)Ω(y')dy'...For the hypersurface Γ=(y,γ(y)), the singular integral operator along Γ is defined by. Kf(x,x_n)=P.V.∫_R^(nl), f(x-y,x_n-γ(y))_(|y|^(n-1))^(Ω(y))dy, where Ω is homogeneous of order 0, ∫_∑_(1)Ω(y')dy'=0, For a certain class of hypersurfaces. T is shown to be bounded on L^p(R^n) provided Ω∈L_α~l(Σ_(n-2)),P>1.展开更多
In this paper we are mainly concerned with the approximation of the following type of singular Integrals: where w(t)≥0 is a weight function, f(x) a real continuous function on [a, b], satisfying certain smooth condit...In this paper we are mainly concerned with the approximation of the following type of singular Integrals: where w(t)≥0 is a weight function, f(x) a real continuous function on [a, b], satisfying certain smooth conditions, and the integral is of Canchy principal value.展开更多
In this paper, we establish the weighted <span style="white-space:nowrap;"><em>L</em><sup><em>p</em></sup></span> <span style="white-space:nowrap;"...In this paper, we establish the weighted <span style="white-space:nowrap;"><em>L</em><sup><em>p</em></sup></span> <span style="white-space:nowrap;">(1 < <em>p</em> < ∞)</span> boundedness of variation operator for the commutators generated by one-sided Calderón-Zygmund singular integrals with Lipschitz functions.展开更多
In this paper, we study the mapping properties of singular integral operator along surfaces of revolution. We prove Lp bounds (1 < p < ∞) for such singular integral operators as well as for their corresponding ...In this paper, we study the mapping properties of singular integral operator along surfaces of revolution. We prove Lp bounds (1 < p < ∞) for such singular integral operators as well as for their corresponding maximal truncated singular integrals if the singular kernels are allowed to be in certain block spaces.展开更多
Boundedness of multilinear singular integrals and their commutators from products of variable exponent Lebesgue spaces to variable exponent Lebesgue spaces are obtained. The vector-valued case is also considered.
In this paper, the authors study two classes of multilinear singular integrals and obtain their boundedness from Lebesgue spaces to Lipschitz spaces and from Herz type spaces to central Campanato spaces. Moreover, the...In this paper, the authors study two classes of multilinear singular integrals and obtain their boundedness from Lebesgue spaces to Lipschitz spaces and from Herz type spaces to central Campanato spaces. Moreover, the authors also consider the extreme cases.展开更多
This paper is devoted to studying the commutators of the multilinear singular integral operators with the non-smooth kernels and the weighted Lipschitz functions. Some mapping properties for two types of commutators o...This paper is devoted to studying the commutators of the multilinear singular integral operators with the non-smooth kernels and the weighted Lipschitz functions. Some mapping properties for two types of commutators on the weighted Lebesgue spaces, which extend and generalize some previous results, are obtained.展开更多
Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also gi...Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.展开更多
In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P...In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P(x,y) is a nontrivial and real-valued polynomial defined on R^n×R^n,Ω(x) is homogeneous of degree zero on R^n, As(x) has derivatives of order ms in ∧βs (0〈βs〈 1), Rms+1 (As;x, y) denotes the (ms+1)-st remainder of the Taylor series of As at x expended about y (s = 1, 2, ..., r), M = ∑s^r =1 ms, the author proves that if 0 〈=β1=∑s^r=1 βs〈1,and Ω∈L^q(S^n-1) for some q 〉 1/(1 -β), then for any p∈(1, ∞), and some appropriate 0 〈β〈 1, TA1,A2,...,Ar, is bounded on L^P(R^n).展开更多
In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in L(log L) 1/γ,(Sn- 1 ) on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewi...In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in L(log L) 1/γ,(Sn- 1 ) on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewicz integrals μΩ,q (f) from ||f||Fp^oq(Rn) into Lp (Rn).展开更多
The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfie...The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfies certain cancellation condition. When kernel Ω(x' )∈Llog+L(S^n-1 ), the Fp^a,q(R^n) boundedness of the above operator is obtained. Meanwhile ,when Ω(x) satisfies L^1- Dini condition,the above operator T is bounded on F1^0,1 (R^n).展开更多
Using the method of localization, the authors obtain the permutation formula of singular integrals with Bochner-Martinelli kernel for a relative compact domain with C^(1) smooth boundary on a Stein manifold. As an a...Using the method of localization, the authors obtain the permutation formula of singular integrals with Bochner-Martinelli kernel for a relative compact domain with C^(1) smooth boundary on a Stein manifold. As an application the authors discuss the regularization problem for linear singular integral equations with Bochner-Martinelli kernel and variable coefficients; using permutation formula, the singular integral equation can be reduced to a fredholm equation.展开更多
基金Supported by the National Natural Science Foundation of China(10931001, 10871173)
文摘In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications of this inequality.
基金Supported by the National Natural Science Foundation of China(11071200,11371295)
文摘In this paper, the authors establish the LV-mapping properties for a class of singular integrals along surfaces in Rn of the form {Ф(lul)u' : u ε ]t^n} as well as the related maimal operators provided that the function Ф satisfies certain oscillatory integral estimates of Van der Corput type, and the integral kernels are given by the radial function h E ε△γ(R+) for γ 〉 1 and the sphere function ΩεFβ(S^n-1) for someβ 〉 0 which is distinct from HI(Sn-1).
文摘Let h, be a measurable function defined on R^+ ×R^+. Let Ω ∈ L(log L^+)^υq (S^n1-1 × S^n2-1) (1≤ υq ≤ 2) be homogeneous of degree zero and satisfy certain cancellation conditions. We show that the singular integral Tf(x1,x2)=p.v.∫∫R^n1+n2 Ω(y′1,y′2)h(|y1|,|y2|)/|y1|^n1|y2|^n2 f(x1-y1,x2-y2)dy1dy2maps from Sp,q^α1,α2F(R^n1×R^n2)boundedly to itself for 1 〈 p, q 〈 ∞, α1, α2 ∈R.
文摘In this article, we obtain the LP-boundedness of commutators of Lipschitz functions and singular integrals with non-smooth kernels on Euclidean spaces.
文摘The Peano derivatives are introduced for functions along an arc in the complex plane. Singular integrals of arbitrary order with singularities at its end-points are defined so that a unified theory for such integrals and Cauchy principal value integrals is established.
文摘This paper serves two purposes. One is to modify Strichartz's results with respect to the asymptotic averages of the Fourier transform of μ on , self-similar measure defined by Hutchinson. Another purpose is to consider a singular integral operator on μ and show that this op- erator is of type (p,p)(1<p<∞).
文摘For the hypersurface Γ=(y,γ(y)), the singular integral operator along Γ is defined by. Kf(x,x_n)=P.V.∫_R^(nl), f(x-y,x_n-γ(y))_(|y|^(n-1))^(Ω(y))dy, where Ω is homogeneous of order 0, ∫_∑_(1)Ω(y')dy'=0, For a certain class of hypersurfaces. T is shown to be bounded on L^p(R^n) provided Ω∈L_α~l(Σ_(n-2)),P>1.
基金project supported by Natural Science Fund of National Science Committee.
文摘In this paper we are mainly concerned with the approximation of the following type of singular Integrals: where w(t)≥0 is a weight function, f(x) a real continuous function on [a, b], satisfying certain smooth conditions, and the integral is of Canchy principal value.
文摘In this paper, we establish the weighted <span style="white-space:nowrap;"><em>L</em><sup><em>p</em></sup></span> <span style="white-space:nowrap;">(1 < <em>p</em> < ∞)</span> boundedness of variation operator for the commutators generated by one-sided Calderón-Zygmund singular integrals with Lipschitz functions.
文摘In this paper, we study the mapping properties of singular integral operator along surfaces of revolution. We prove Lp bounds (1 < p < ∞) for such singular integral operators as well as for their corresponding maximal truncated singular integrals if the singular kernels are allowed to be in certain block spaces.
基金supported by the Scientific Research Fund of Hunan Provincial Education Department (09A058)
文摘Boundedness of multilinear singular integrals and their commutators from products of variable exponent Lebesgue spaces to variable exponent Lebesgue spaces are obtained. The vector-valued case is also considered.
基金This project is supported by the National 973Project(G199907510)the SEDF of China(20010027002)
文摘In this paper, the authors study two classes of multilinear singular integrals and obtain their boundedness from Lebesgue spaces to Lipschitz spaces and from Herz type spaces to central Campanato spaces. Moreover, the authors also consider the extreme cases.
基金Supported by the National Natural Science Foundation of China (10771054,11071200)the NFS of Fujian Province of China (No. 2010J01013)
文摘This paper is devoted to studying the commutators of the multilinear singular integral operators with the non-smooth kernels and the weighted Lipschitz functions. Some mapping properties for two types of commutators on the weighted Lebesgue spaces, which extend and generalize some previous results, are obtained.
基金Supported by NNSF and RFDP of Higher Education of China.
文摘Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.
文摘In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P(x,y) is a nontrivial and real-valued polynomial defined on R^n×R^n,Ω(x) is homogeneous of degree zero on R^n, As(x) has derivatives of order ms in ∧βs (0〈βs〈 1), Rms+1 (As;x, y) denotes the (ms+1)-st remainder of the Taylor series of As at x expended about y (s = 1, 2, ..., r), M = ∑s^r =1 ms, the author proves that if 0 〈=β1=∑s^r=1 βs〈1,and Ω∈L^q(S^n-1) for some q 〉 1/(1 -β), then for any p∈(1, ∞), and some appropriate 0 〈β〈 1, TA1,A2,...,Ar, is bounded on L^P(R^n).
基金Supported in part by National Natural Foundation of China (Grant No. 11071250)
文摘In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in L(log L) 1/γ,(Sn- 1 ) on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewicz integrals μΩ,q (f) from ||f||Fp^oq(Rn) into Lp (Rn).
文摘The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfies certain cancellation condition. When kernel Ω(x' )∈Llog+L(S^n-1 ), the Fp^a,q(R^n) boundedness of the above operator is obtained. Meanwhile ,when Ω(x) satisfies L^1- Dini condition,the above operator T is bounded on F1^0,1 (R^n).
基金The project was supported by the Natural Science Foundation of Fujian Province of China (Z0511002)the National Science Foundation of China (10271097,10571144)+1 种基金Foundation of Tianyuan (10526033)Chen L P, the Corresponding author
文摘Using the method of localization, the authors obtain the permutation formula of singular integrals with Bochner-Martinelli kernel for a relative compact domain with C^(1) smooth boundary on a Stein manifold. As an application the authors discuss the regularization problem for linear singular integral equations with Bochner-Martinelli kernel and variable coefficients; using permutation formula, the singular integral equation can be reduced to a fredholm equation.