The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar...The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the cond...New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.展开更多
This paper is devoted to study the following the singularly perturbed fourth-order ordinary differential equation ∈y(4) =f(t,y',y'',y'''),0t1,0ε1 with the nonlinear boundary conditions y(0)=y'(1)=0,p...This paper is devoted to study the following the singularly perturbed fourth-order ordinary differential equation ∈y(4) =f(t,y',y'',y'''),0t1,0ε1 with the nonlinear boundary conditions y(0)=y'(1)=0,p(y''(0),y'''(0))=0,q(y''(1),y'''(1))=0 where f:[0,1]×R3→R is continuous,p,q:R2→R are continuous.Under certain conditions,by introducing an appropriate stretching transformation and constructing boundary layer corrective terms,an asymptotic expansion for the solution of the problem is obtained.And then the uniformly validity of solution is proved by using the differential inequalities.展开更多
k holomorphic functions are a type of generation of holomorphic functions.In this paper,a nonlinear boundary value problem for k holomorphic functions is primarily discussed on generalized polycylinders in C^(2).The e...k holomorphic functions are a type of generation of holomorphic functions.In this paper,a nonlinear boundary value problem for k holomorphic functions is primarily discussed on generalized polycylinders in C^(2).The existence of the solution for the problem is studied in detail with the help of the boundary properties of Cauchy type singular integral operators with a k holomorphic kernel.Furthermore,the integral representation for the solution is obtained.展开更多
This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- an...This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- and upper-solution pair, a concept defined in this paper, and employ the Nagumo conditions and algebraic boundary layer functions to ensure the existence of solutions of the problem. The uniformly valid asymptotic estimate of the solutions is given as well. The differential systems have nonlinear dependence on all order derivatives of the unknown.展开更多
In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption ...In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption on a and f, we establish intervals of the parameter λ, which yield the existence of positive solution, our proof based on Krasnosel'skii fixed-point theorem in cone.{u"(t)+λa(t)f(t,u(t))=0,0<t<1,u(t)=u(1-t),u′(0)-u′(1)=u(1/2)is studied,where A is a positive parameter,under various assumption on a and f,we establish intervals of the parameter A,which yield the existence of positive solution,our proof based on Krasnosel'skii fixed-point theorem in cone.展开更多
In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v,...In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v, nonincreasing on v for each x,u; there exists a constant q∈(0,1) such that t qf(x,t -1 u,tu)f(x,u,u)λ qf(x,λ -1 u,λu),0<t<1<λ, u∈R +. Then a necessary and sufficient condition for the equation u″+f(x,u,u)=0 on the boundary condition αu(a)-βu′(a)=0, γ(b)+δu′(b)=0 to have C 1(I) nonzero solutions is that 0<∫ b af(x,e(x),e(x))dx<∞, where α,β,γ,δ are nonnegative real numbers, Δ=(b-a)αγ+αδ+βγ>0, e(x)=G(x,x), G(x,y) is Green's function of above mentioned boundary value problem (when f(x,u,v)≡0). Received September 9,1996. Revised March 31,1997. 1991 MR Subject Classification: 34B.展开更多
This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2...This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.展开更多
In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solu...In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solution is proved and the uniformly valid asymptotic expansions is obtained as well.展开更多
Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1...Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.展开更多
The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of...The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of differential inequalities.展开更多
The singularly perturbed boundary value problem for quasilinear third-order ordinary differential equation involving two small parameters has been considered. For the three cases epsilon/mu (2) --> 0(mu --> 0), ...The singularly perturbed boundary value problem for quasilinear third-order ordinary differential equation involving two small parameters has been considered. For the three cases epsilon/mu (2) --> 0(mu --> 0), mu (2)/epsilon --> 0(epsilon --> 0) and epsilon = mu (2), the formal asymptotic solutions are constructed by the method of two steps expansions and the existences of solution are proved by using the differential inequality method. In addition, the uniformly valid estimations of the remainder term are given as well.展开更多
In this paper we present some new existence results for singular boundary value problems by Arzela-Ascoli theorem. In particular our nonlinearity may be singular in its dependent variable.
In this paper, for a second-order three-point boundary value problem u″+f(t,u)=0,0〈t〈1,au(0)-bu′(0)=0,u(1)-au(η)=0,where η∈ (0, 1), a, b, α ∈R with a^2 + b^2 〉 0, the existence of its nontrivia...In this paper, for a second-order three-point boundary value problem u″+f(t,u)=0,0〈t〈1,au(0)-bu′(0)=0,u(1)-au(η)=0,where η∈ (0, 1), a, b, α ∈R with a^2 + b^2 〉 0, the existence of its nontrivial solution is studied. The'conditions on f which guarantee the existence of nontrivial solution are formulated. As an application, some examples to demonstrate the results are given.展开更多
By constructing suitable Banach space, an existence theorem is established under a condition of linear growth for the third-order boundary value problem u″′(t)+f(t,u(t),u′(t))=0,0〈t〈1,u(0)=u′(0)=u′...By constructing suitable Banach space, an existence theorem is established under a condition of linear growth for the third-order boundary value problem u″′(t)+f(t,u(t),u′(t))=0,0〈t〈1,u(0)=u′(0)=u′(1)=0, where the nonlinear term contains first and second derivatives of unknown function. In this theorem the nonlinear term f(t, u, v, w) may be singular at t = 0 and t = 1. The main ingredient is Leray-Schauder nonlinear alternative.展开更多
1. Introduction We consider the singular nonlinear boundary value problem where l=v+3/v-1,l+1 is the critical exponent of the embedding of weighted Sobolev space Wt21,2(O, +∞) into Lt2q(O, ∞), v>2. When v=N-1...1. Introduction We consider the singular nonlinear boundary value problem where l=v+3/v-1,l+1 is the critical exponent of the embedding of weighted Sobolev space Wt21,2(O, +∞) into Lt2q(O, ∞), v>2. When v=N-1 we can get the radial solutions of problem where 2*=2N/N-2 is the critical exponent of the Sobolev embedding H1(Rn)→LQ(RN). Kurtz has discussed the existence of κ-node solution of (1.1), (1.2) for each κ∈N U{0} when the growth rate of |u|l-1u+f(u) is lower then |u|v+3/v-1 i.e.展开更多
In this paper, by the technique and the method of diagonalization, the boundary value problem for second order singularly perturbed nonlinear system as follows is dealt with: epsilon y '=f(t, y, y', epsilon), ...In this paper, by the technique and the method of diagonalization, the boundary value problem for second order singularly perturbed nonlinear system as follows is dealt with: epsilon y '=f(t, y, y', epsilon), y(0, epsilon)=a(epsilon), y(1,epsilon)=b(epsilon) The existance of the solution and its asymptotic properties are discussed when the eigenvalues of Jacobi matrix f(y') has K negative real parts and N-K positve real parts.展开更多
A class of nonlinear boundary value problems(BVP) for the second_order E 2 class elliptic systems in general form is discussed. By introducing a kind of transformation,this kind of BVP is reduced to a class of genera...A class of nonlinear boundary value problems(BVP) for the second_order E 2 class elliptic systems in general form is discussed. By introducing a kind of transformation,this kind of BVP is reduced to a class of generalized nonlinear Riemann_Hilbert BVP. And then some singular integral operators are introduced to establish the equivalent nonlinear singular integral equations. The solvability is proved under some suitable hypotheses by means of the properties of singular integral operators and the function theoretic methods.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 12002195)the National Science Fund for Distinguished Young Scholars (No. 12025204)the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)。
文摘The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
文摘New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.
文摘This paper is devoted to study the following the singularly perturbed fourth-order ordinary differential equation ∈y(4) =f(t,y',y'',y'''),0t1,0ε1 with the nonlinear boundary conditions y(0)=y'(1)=0,p(y''(0),y'''(0))=0,q(y''(1),y'''(1))=0 where f:[0,1]×R3→R is continuous,p,q:R2→R are continuous.Under certain conditions,by introducing an appropriate stretching transformation and constructing boundary layer corrective terms,an asymptotic expansion for the solution of the problem is obtained.And then the uniformly validity of solution is proved by using the differential inequalities.
基金the NSF of China(11571089,11871191)the NSF of Henan Province(222300420397)+1 种基金the NSF of Hebei Province(A2022208007)the Key Foundation of Hebei Normal University(L2018Z01)。
文摘k holomorphic functions are a type of generation of holomorphic functions.In this paper,a nonlinear boundary value problem for k holomorphic functions is primarily discussed on generalized polycylinders in C^(2).The existence of the solution for the problem is studied in detail with the help of the boundary properties of Cauchy type singular integral operators with a k holomorphic kernel.Furthermore,the integral representation for the solution is obtained.
基金supported by the National Natural Science Foundation of China (Grant No.10771212)the Natural Science Foundation of Jiangsu Province (Grant No.BK2008119)the Natural Science Foundation of the Education Division of Jiangsu Province (Grant No.08KJB110011)
文摘This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- and upper-solution pair, a concept defined in this paper, and employ the Nagumo conditions and algebraic boundary layer functions to ensure the existence of solutions of the problem. The uniformly valid asymptotic estimate of the solutions is given as well. The differential systems have nonlinear dependence on all order derivatives of the unknown.
基金Supported by the National Natural Science Foundation of China(11261053) Supported by the Natural Science Foundation of Gansu Province of China(1308RJZA125)
文摘In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption on a and f, we establish intervals of the parameter λ, which yield the existence of positive solution, our proof based on Krasnosel'skii fixed-point theorem in cone.{u"(t)+λa(t)f(t,u(t))=0,0<t<1,u(t)=u(1-t),u′(0)-u′(1)=u(1/2)is studied,where A is a positive parameter,under various assumption on a and f,we establish intervals of the parameter A,which yield the existence of positive solution,our proof based on Krasnosel'skii fixed-point theorem in cone.
文摘In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v, nonincreasing on v for each x,u; there exists a constant q∈(0,1) such that t qf(x,t -1 u,tu)f(x,u,u)λ qf(x,λ -1 u,λu),0<t<1<λ, u∈R +. Then a necessary and sufficient condition for the equation u″+f(x,u,u)=0 on the boundary condition αu(a)-βu′(a)=0, γ(b)+δu′(b)=0 to have C 1(I) nonzero solutions is that 0<∫ b af(x,e(x),e(x))dx<∞, where α,β,γ,δ are nonnegative real numbers, Δ=(b-a)αγ+αδ+βγ>0, e(x)=G(x,x), G(x,y) is Green's function of above mentioned boundary value problem (when f(x,u,v)≡0). Received September 9,1996. Revised March 31,1997. 1991 MR Subject Classification: 34B.
文摘This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.
基金Supported by the Natural Science Foundation of Zhejiang Provivce (102009)Supported by the Natural Foundation of Huzhou Teacher's College(200302)
文摘In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solution is proved and the uniformly valid asymptotic expansions is obtained as well.
文摘Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.
文摘The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of differential inequalities.
文摘The singularly perturbed boundary value problem for quasilinear third-order ordinary differential equation involving two small parameters has been considered. For the three cases epsilon/mu (2) --> 0(mu --> 0), mu (2)/epsilon --> 0(epsilon --> 0) and epsilon = mu (2), the formal asymptotic solutions are constructed by the method of two steps expansions and the existences of solution are proved by using the differential inequality method. In addition, the uniformly valid estimations of the remainder term are given as well.
文摘In this paper we present some new existence results for singular boundary value problems by Arzela-Ascoli theorem. In particular our nonlinearity may be singular in its dependent variable.
基金This work was supported by Key Academic Discipline of Zhejiang Province of China(2005)the Natural Science Foundation of Zhejiang Province of China(Y605144)the Education Department of Zhejiang Province of China(20051897).
文摘In this paper, for a second-order three-point boundary value problem u″+f(t,u)=0,0〈t〈1,au(0)-bu′(0)=0,u(1)-au(η)=0,where η∈ (0, 1), a, b, α ∈R with a^2 + b^2 〉 0, the existence of its nontrivial solution is studied. The'conditions on f which guarantee the existence of nontrivial solution are formulated. As an application, some examples to demonstrate the results are given.
文摘By constructing suitable Banach space, an existence theorem is established under a condition of linear growth for the third-order boundary value problem u″′(t)+f(t,u(t),u′(t))=0,0〈t〈1,u(0)=u′(0)=u′(1)=0, where the nonlinear term contains first and second derivatives of unknown function. In this theorem the nonlinear term f(t, u, v, w) may be singular at t = 0 and t = 1. The main ingredient is Leray-Schauder nonlinear alternative.
文摘1. Introduction We consider the singular nonlinear boundary value problem where l=v+3/v-1,l+1 is the critical exponent of the embedding of weighted Sobolev space Wt21,2(O, +∞) into Lt2q(O, ∞), v>2. When v=N-1 we can get the radial solutions of problem where 2*=2N/N-2 is the critical exponent of the Sobolev embedding H1(Rn)→LQ(RN). Kurtz has discussed the existence of κ-node solution of (1.1), (1.2) for each κ∈N U{0} when the growth rate of |u|l-1u+f(u) is lower then |u|v+3/v-1 i.e.
文摘In this paper, by the technique and the method of diagonalization, the boundary value problem for second order singularly perturbed nonlinear system as follows is dealt with: epsilon y '=f(t, y, y', epsilon), y(0, epsilon)=a(epsilon), y(1,epsilon)=b(epsilon) The existance of the solution and its asymptotic properties are discussed when the eigenvalues of Jacobi matrix f(y') has K negative real parts and N-K positve real parts.
文摘A class of nonlinear boundary value problems(BVP) for the second_order E 2 class elliptic systems in general form is discussed. By introducing a kind of transformation,this kind of BVP is reduced to a class of generalized nonlinear Riemann_Hilbert BVP. And then some singular integral operators are introduced to establish the equivalent nonlinear singular integral equations. The solvability is proved under some suitable hypotheses by means of the properties of singular integral operators and the function theoretic methods.